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ABSTRACT
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in
condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only
molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and over-
lap owing to various relaxation processes and inhomogeneous broadening. On the basis of an anharmonic multimode Brownian oscillator
model with nonlinear system–bath coupling, we have developed an approach that simulates 2D spectra, taking into account arbitrary modes
of intermolecular and intramolecular vibrations simultaneously. Although only two-mode quantum calculations are feasible with this model,
owing to high computational costs, here we restrict ourselves to the classical case and perform three-mode calculations. We demonstrate the
applicability of our method by calculating 2D correlation infrared spectra of water for symmetric stretching, antisymmetric stretching, and
bending modes. The quantum effects of these results are deduced by comparing 2D quantum spectra previously obtained for two intramolecu-
lar modes with those obtained using our classical approach under the same physical conditions. The results show that the 2D spectra calculated
by separating the stretching modes into symmetric and asymmetric modes provide better descriptions of peak profiles, such as the splitting
of cross-peaks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0245564

I. INTRODUCTION

Interactions between solute molecules and solvent water have
critical roles in many chemical and biological processes; for instance,
high-frequency intramolecular modes facilitate bond formation
and breakage of solute molecules, whereas low-frequency inter-
molecular modes contribute irreversible thermal excitation and
relaxation.1,2 Infrared (IR), THz, and Raman spectroscopies have
been used to elucidate the spectroscopic line shapes of liquid
water under various vibrational modes and interactions of these
modes. In particular, IR has been used to study intramolecu-
lar OH stretching (∼3600 cm−1) and HOH intramolecular bend-
ing (∼1600 cm−1) motions, whereas THz and Raman approaches
have been used for HB intermolecular translational (vibrational)
motions (33–100 cm−1) and HB intermolecular vibrational motions
(33–400 cm−1).

Recent advances in two-dimensional (2D) experimental tech-
niques, which imprint an additional time correlation on the system
response, have expanded our ability to study both intermolecular
and intramolecular modes in the 0–4000 cm−1 frequency range.
These techniques include 2D IR,3–11 2D THz–Raman,12–16 and 2D
THz–IR–visible light17,18 (equivalent to 2D IR–IR–Raman) spectro-
scopies.19 These methods are critical for understanding the degree
of coupling to surrounding molecules, often referred to as the
“bath.”20–23

Molecular dynamics (MD) simulations24,25 and simulations
using stochastic models with noise correlation functions evalu-
ated from MD simulations have been used to analyze these 2D
signals.26–28 However, no theoretical results have yet been obtained
that satisfactorily explain the experimental results. This is likely to be
because water interactions are complex; thus, intramolecular modes
must be treated quantum mechanically,29–32 and any calculation
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of multidimensional spectra must properly account for the effects
of quantum entanglement due to interactions with surrounding
molecules.33–35

In condensed phases, a molecular system interacts with its
surrounding environment (bath) in a non-perturbative and non-
Markovian manner. Such interactions lead to quantum entangle-
ment (bathentanglement)36 between the solute molecule and the
bath in the quantum case; this, in turn, has an effect on the lin-
ear response spectrum, in the form of changes in peak position and
profile. The entanglement effect in nonlinear response spectra is
particularly important; examples include photon echo in interac-
tions with external laser fields that produce echo signals. In such
cases, the calculation of 2D spectra requires the use of theoretical
approaches, such as stochastic theory,26–28 hierarchical equations of
motion (HEOM),33–38 and the quasi-adiabatic path integral,39 which
treat the thermal bath in a non-Markovian, non-perturbative, and
non-factorized manner.

The only quantum theory that currently enables effective
description of the intramolecular modes of water, including pop-
ulation relaxation, phase relaxation, and anharmonicity of modes
with coupling between modes, is the multimode anharmonic
system–bath model. This model was built on the basis of MD,19,22,40

specifically targeted to be solved with the HEOM.33–35,41–43 It can be
used to accurately describe the effects of non-perturbative and non-
Markovian dephasing and relaxation, as well as temperature effects
relating to thermal equilibrium.36,44 However, it is a computation-
ally expensive approach, and, to date, it has only been successfully
applied to consider two modes at a time.37,38 To properly under-
stand energy and coherence transfer between intramolecular modes,
at least three modes must be considered simultaneously: the OH
antisymmetric and symmetric stretching modes as well as the HOH
bending mode.

Although experimental techniques are rapidly advancing, the
limitation of theoretical analysis to two modes remains a significant
impediment to scientific progress. In this study, we perform sim-
ulations in the classical case, taking advantage of current graphics
processing unit (GPU) technology to perform three-mode calcu-
lations. First, we compute 2D IR spectra of a liquid water model
consisting of three primary intermolecular modes. Although it is not
possible for us to directly incorporate quantum effects, we assess the
influence of such effects by comparing the results of quantum and
classical calculations for the two-mode scenario.

This paper is organized as follows: in Sec. II, we introduce the
multimode anharmonic Brownian model and the classical HEOM
in a Wigner space representation. The set of parameters used in the
simulation is also given. In Sec. III, 2D IR correlation spectra are
computed and analyzed for the two-mode and three-mode cases.
Section IV presents some concluding remarks.

II. THEORY
A. Multimode anharmonic Brownian model
for intramolecular modes

We consider a liquid water model consisting of one of the three
primary intermolecular and intramolecular modes. These modes are
described by dimensionless vibrational coordinates, q = (q1, q1′ , q2).
Each mode is independently coupled to the other optically inactive

modes, which constitute a bath system represented by an ensem-
ble of harmonic oscillators. The total Hamiltonian can then be
expressed as19,37,38

Ĥtot =∑
s
(Ĥ(s)A + Ĥ(s)I + Ĥ(s)B ) +∑

s<s′
Ûss′(q̂s, q̂s′), (1)

where

Ĥ(s)A =
p̂2

s

2ms
+ Ûs(q̂s) (2)

is the Hamiltonian for the sth mode, with mass ms, coordinate q̂s,
and momentum p̂s;

Ûs(q̂s) =
1
2

msν2
s q̂2

s +
1
3!

gs3 q3
s (3)

is the anharmonic potential for the sth mode, described by the fre-
quency νs and cubic anharmonicity gs3 . The mode–mode interaction
between the sth and s′th modes is expressed as

Ûss′(q̂s, q̂s′) = gss′ q̂sq̂s′ +
1
6
(gs2s′ q̂

2
s q̂s′ + gss′2 q̂sq̂2

s′), (4)

where gss′ represents the second-order anharmonicity and gs2s′ and
gss′2 represent the third-order anharmonicity. The bath Hamiltonian
for the sth mode is expressed as

Ĥ(s)B =∑
js

[
p̂2

js

2mjs

+
mjs ω

2
js

2
(x̂ js − αjs V̂ s(q̂ s))

2
], (5)

where the momentum, coordinate, mass, and frequency of the jsth
bath oscillator are given by p js , x js , m js , and ω js , respectively. The
system–bath interaction, defined as

H(s)I = −Vs(qs)∑
js

αjs xjs , (6)

consists of linear–linear (LL) and square–linear (SL) system–bath
interactions, Vs(qs) ≡ V(s)LL qs + V(s)SL qs

2
/2, with coupling strengths

V(s)LL , V(s)SL , and αjs .
33–35,40–43 While the LL interaction mainly con-

tributes to energy relaxation, the LL+SL system–bath interaction
causes vibration dephasing in the case of slow modulation, owing
to frequency fluctuations in the system oscillations.22,33,44,45 The bath
property is characterized by the spectral distribution function (SDF),
defined as

Js(ω) ≡∑
js

α2
js

2msωjs

δ(ω − ωjs). (7)

Here, we assume the Drude SDF expressed as

Js(ω) =
msζs

2π
γ2

s ω
ω2
+ γ2

s
, (8)

where ζs is the system–bath coupling strength and γs represents
the width of the SDF for mode s, which relates to the vibrational
dephasing time, defined as τs = 1/γs.

The classical collective coordinate is written as Xs. The correla-
tion function is then given by ⟨Xs(t)Xs(0)⟩∝ e−γs ∣t∣. This indicates
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that the bath oscillators interact with the system in the form of
stochastic Gaussian noise with correlation time t0, if the relaxation
effect is ignored.44,46 This model has been used to derive predic-
tions for 2D Raman,33,44 2D THz–IR,40 2D IR–Raman,19,37 and 2D
IR22,35,42,43 spectra.

In the past, various stochastic-theory-based models have been
developed to analyze 2D IR spectra with respect to stretching modes
of water; in these models, the noise amplitude Δ and correlation time
τs were evaluated based on classical MD trajectories or quantum
mechanics/molecular mechanics approaches. The stochastic model
for a single stretching mode corresponds to the LL+SL anharmonic
Brownian model for a single mode when the noise correlation is
slow (γs ≪ ω0) and in the high-temperature limit (βhω0/2≪ 1)
with respect to the mode frequency ω0.43 As the stochastic model
ignores the effects of the population relaxation, the 0-1-0 and 0-1-
2 peak profiles are more or less symmetric and not reproducible,
for example, as in experimentally obtained 2D spectra in the mid-IR
region.6–8

Incorporating the non-Condon effect26–28 or the effects
of intermolecular hydrogen coupling among the surrounding
molecules27 within the framework of the stochastic model in the
eigenstate representation results in the 0-1-0 and 0-1-2 peaks
becoming asymmetric. However, the calculated 2D spectra continue
to differ significantly from the observed 2D spectra in the mid-
IR region.6–8 By contrast, the LL+SL anharmonic Brownian model
described in molecular coordinates facilitates investigation of vibra-
tional relaxation and energy transfer under not only fluctuation but
also dissipation at finite temperatures in both intramolecular and
intermolecular modes, in a physically consistent manner.33,44 Thus,
the present model allows for more detailed analysis of 2D vibrational
spectra compared to previous approaches.

For the two-mode case, we determined the parameter set for
the present model to reproduce the 2D IR–Raman spectra obtained
from the classical MD simulations and modified it to account for
quantum effects.37,38 As an example of a three-mode case, we con-
sider here the following modes: (1) OH antisymmetric stretching
(anti-stretching), (1′)OH symmetric stretching (stretching), and (2)
HOH bending (bending).

Notably, both the stochastic model and the present model
use parameters based on classical MD results. However, the para-
meters of the stochastic model were selected to solely reproduce
the trajectory of the stretching motion,26–28 whereas those of the
present model were chosen to reproduce the entire profile of the
2D IR–Raman spectrum obtained from MD results.19 Consequently,
the present model encompasses various effects, including phase
relaxation and population relaxation between modes. Although
it is difficult to compare parameters between the two models,
because they have been constructed in very different ways, the
noise correlation functions for each mode are well defined and
show relatively good agreement, although their amplitude is very
different.

B. Classical hierarchal Fokker–Planck equations
for a multimode system

To study the effects of thermal activation, relaxation, vibra-
tional dephasing, the anharmonicity of modes, and the nonlin-
earities of the dipole moment in the 2D spectra within a unified

framework, we required a kinetic equation that could treat ther-
mal fluctuations as well as dissipation in a non-perturbative, non-
Markovian manner. For the LL+SL anharmonic Brownian model,
the classical hierarchal Fokker–Planck equations (CHFPE) in the
phase space for the system described by Eqs. (1)–(8), developed for
multidimensional vibrational spectra, can be expressed as19,40,44

∂W(n)
(q, p; t)
∂t

= (L̂(q, p) −∑
s

nsγs)W(n)
(q, p; t)

+∑
s

Φ̂sW(n+es)(q, p; t)

+∑
s

Θ̂sW(n−es)(q, p; t), (9)

where W(n)
(q, p; t) is the Wigner distribution function (WDF). As

we are considering the case of three modes, the hierarchical ele-
ments are expressed here as n = (n1, n2, n3), where each sth mode
element is denoted by a positive integer ns, and es is the unit vector
for the sth space. It should be noted that W(n)

(q, p; t) has physi-
cal meaning only when n = (0,0,0); for other values of n, it is an
auxiliary WDF that indicates the non-perturbative, non-Markovian
system–bath interactions.36,44 The classical Liouvillian L̂ for the
system Hamiltonian Hsys(q, p) ≡ ∑s H(s)A +∑s<s′ Uss′(q̂s, q̂s′) can be
expressed as

L̂(q, p)W(q, p) ≡ {Hsys(q, p), W(q, p)}PB, (10)

where {,}PB is the Poisson bracket defined as

{A, B}PB ≡∑
s
(
∂A
∂qs

∂B
∂ps
−

∂A
∂ps

∂B
∂qs
) (11)

for any functions A and B. Operators Φ̂s and Θ̂s represent the energy
exchange between the sth mode and the sth bath, respectively. They
are expressed as33,34

Φ̂s =
∂Vs(qs)

∂qs

∂

∂ps
(12)

and

Θ̂s =
msζsγs

β
∂Vs(qs)

∂qs

∂

∂ps
+ ζsγsps

∂Vs(qs)

∂qs
, (13)

where ζs is the coupling strength, γs is the inverse correlation time,
and T is the temperature.

The three-body response function of the dipole moment can be
expressed as44

R(t3, t2, t1) =∬ dpdqμ(q)G(t3)μ(q)×G(t2)

× μ(q)×G(t1)μ(q)×Weq
(p, q), (14)

where the hyperoperator × is defined as μ(q)×W(p, q)
≡ {μ(q), W(p, q)}PB; G(t) is Green’s function for the time-
evolution operator, as presented in Eq. (9); and Weq

(p, q) is
the equilibrium WDF expressed in terms of the hierarchical
elements.19,40,44 The dipole function is defined as

μ(q) =∑
s
(μsqs + μssq2

s ) +∑
s≠s′

μss′qsqs′. (15)

J. Chem. Phys. 162, 044105 (2025); doi: 10.1063/5.0245564 162, 044105-3

Published under an exclusive license by AIP Publishing

 24 January 2025 11:48:59

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

The non-Condon effects and mode-mixing effects of dipolar
interactions are included in the model as μssq2

s and μss′qsqs′ .
The 2D correlation IR spectrum is obtained by adding the two

terms corresponding to the rephasing term RNR(t3, t2, t1) and the
non-rephasing term RR(t3, t2, t1) with equal weights.47–49 A com-
mon definition of a 2D correlation spectrum can be expressed
as22,48,49

IC(ω3, t2, ω1) = Im{∫
∞

0
dt1∫

∞

0
dt3e−iω1t1 e+iω3t3 RR(t3, t2, t1)}

+ Im{∫
∞

0
dt1∫

∞

0
dt3eiω1t1 e+iω3t3 RNR(t3, t2, t1)}.

(16)

Although we could theoretically separate RR and RNR by choosing
specific Liouville paths in the energy state model, this process is
not easy in cases where the response functions must be calculated
in phase space. Therefore, we eliminate the undesired rephasing
contribution, using the Fourier transform of t2 for IC(ω3, t2, ω1)

with RR(t3, t2, t1) = RNR(t3, t2, t1) = R(t3, t2, t1) to remove the oscil-
latory contribution in period t2 with frequency 2νs, where νs is the
frequency of the target mode s.22,24,38,50

C. Integration of the CHFPE
The CHFPE is time-integrated using the fourth-order

Runge–Kutta method. For efficient parallel processing, the coor-
dinate derivatives in the kinetic term are represented as a triple
diagonal matrix. We then integrate Eq. (9) using the compact-
finite-difference scheme,51 with the non-uniform mesh defined as
follows:

q =
kqhl

(1.0 + be−
k2

a2 )

(1.0 + be−
1.0
a2 ), (17)

where a and b are parameters that characterize the non-uniform
mesh, k is an equidistant parameter in the range −1.0 ≤ k ≤ 1.0, and
qhl is the size of half the domain in the q direction. For numerical
integrations, the hierarchy is truncated to satisfy the condition δtot
> Δn/N, where δtot is the tolerance of the truncation, with N = ∑s ns
and

Δn =∏
s

1
(ns)

0.05 (
ζs

βh̵ν2
0
)

ns

. (18)

By adjusting the number of hierarchical elements, we can calculate
the spectrum with the desired accuracy.

The time evolution in the CHFPE is processed using paral-
lel cyclic reduction. The entire routine is coded using the CUBLAS
library and executed on a GPU without requiring memory transfer
to the central processing unit (CPU). The source code that we devel-
oped was run on NVIDIA A100 (VRAM 80G) GPU boards hosted
by a computer with Intel XEON 6212U (24 cores) and took about
1 week to compute one 2D correlation spectrum on a single
GPU. The VRAM used during calculations was 1 GB or less. The
source code used in the present investigation will be provided in a
forthcoming paper.

III. NUMERICAL RESULTS
The method developed in this work can be used to simulate

nonlinear vibrational spectra of intramolecular and intermolecular
modes of any molecule via design of a multimode LL+SL Brown-
ian model based on MD simulations and/or experimental results.
Although the classical description is valid for intermolecular vibra-
tional modes in which the thermal excitation at room temperature is
close to the excitation frequency, intramolecular vibrational modes
in which the vibrational excitation energy is much higher than the
thermal excitation must be treated quantum mechanically. How-
ever, with current CPU power, only two-mode quantum calculations
are possible.37,38 Therefore, in the present work, we limited our-
selves to the classical case and used GPUs instead of CPUs to
perform three-mode calculations. Quantum effects on the classi-
cal three-mode spectrum were then inferred by comparing the
quantum two-mode spectra presented in Refs. 37 and 38 with clas-
sical two-mode spectra obtained using the present software for the
same model.

A. The two-mode case: Comparison with quantum
results

First, we considered a two-mode case in which the stretch-
ing and anti-stretching modes were considered as a single mode
with ν1 = 3520 cm−1 that interacts with the bending mode with
ν2 = 1710 cm−1.19 The parameter values of the simulations are given
in Table I. The two-mode model was developed to simulate a 2D
IR–Raman spectrum using the CHFPE19 and then modified to sim-
ulate 2D IR–Raman and 2D correlation IR spectra using quantum
hierarchical Fokker–Planck equations.37,38 Comparing previously
obtained quantum mechanically calculated 2D IR spectra38 with
those obtained here classically using the same model under the same
conditions enabled us to identify the purely quantum effects in the
2D spectrum, thereby providing information for deducing quantum
results from classical three-mode calculations.

Figure 1 shows the 2D IR spectra for the stretching motion
and the stretching → bending motion obtained in the quantum
and classical cases under the same physical conditions. It should
be noted that a similar comparison has previously been made for
2D IR–Raman spectroscopy.37 However, to investigate quantum
effects in vibrational dephasing, it is necessary to perform the anal-
ysis for 2D IR. As in the 2D IR–Raman case, the discrepancy in
peak positions between the classical and quantum scenarios could

TABLE I. Parameter values of the multimode intramolecular LL+SL BO model for
(1) stretching and (2) bending modes obtained on the basis of Refs. 37 and 38.
Here, we set the fundamental frequency to ν0 = 4000 cm−1. The normalized para-

meters were defined as ζ̃s ≡ (ν0/νs)
2ζs, Ṽ(s)LL ≡ (νs/ν0)V

(s)
LL , Ṽ(s)SL ≡ V(s)SL , g̃

s3

≡ (νs/ν0)
3g

s3 , μ̃s ≡ (ν0/νs)μs, and μ̃ss ≡ (ν0/νs)
2μss. Anharmonic mode–mode

coupling and dipole elements are given by g̃
121′
= 0, g̃

11′2
= 0.2, and μ̃11′ = 2.0

× 10−3.

s νs (cm−1) γs/ω0 ζ̃s Ṽ(s)LL Ṽ(s)SL g̃s3 μ̃s μ̃ss

1 3520 5.0 × 10−3 9 0 1.0 −5.0 × 10−1 3.3 1.2 × 10−2

2 1710 2 × 10−2 0.8 0 1.0 −7 × 10−1 1.8 0
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FIG. 1. Third-order 2D correlation IR spectra for the two-mode case consisting
of a stretching mode with ν1 = 3520 cm−1 and a bending mode with ν2 = 1710
cm−1. The upper panels show the stretching motion, whereas the lower panels
show stretching → bending motions for different t2. All spectral intensities were
normalized with respect to the absolute values of the maximum peak intensity of
each diagonal peak. In each picture, the left panels show the quantum results from
Ref. 38, and the right panels show the classical results. The direction of the nodal
lines (red dashed lines) in the upper panel represents the extent of correlation
between the vibrational coherences of the t1 and t3 periods. For clarity, data for
off-diagonal peaks were multiplied by 3 in the cases of t2 = 0 and 50 fs. The quan-
tum results were reproduced with permission from H. Takahashi and Y. Tanimura,
J. Chem. Phys. 158, 124108 (2023). Copyright 2023 AIP Publishing LLC.

be attributed to the classical treatment of the anharmonic potential
using a quantum mechanically constructed potential.29,35,52–55 In the
classical case, the frequency is determined by the curvature at the
bottom of the potential; in the quantum case, it is amplified by zero-
point oscillations and can be determined by the difference between
the ground state and the first excited state. The peak separation cor-
responding to the 0-1-0 and 0-1-2 transitions does not occur in
classical simulations because the energy is not discretized. However,
the small peak separation between the (red) peak corresponding to
the 0-1-0 transition and the (blue) peak corresponding to the 0-1-2
transition in the quantum results indicates that the anharmonicity
of the modes was small, whereas the spectrum vanished without
anharmonicity.35

The broadening of the peak profile in the ω1–ω3 diagonal direc-
tion resulted from the inhomogeneous distribution,11,22 which is
larger in the quantum case than in the classical case. This is because
the intramolecular vibrational states in the classical case are localized
at the bottom of the potential at room temperature, whereas in the

FIG. 2. Third-order 2D correlation IR spectra of the bending mode calculated with
stretching–bending coupling for different t2. All spectral intensities were normalized
with respect to the absolute maximum peak intensity in the t2 = 0 case. The left
panels show the quantum results from Ref. 38, and the right panels show the
classical results. The quantum results were reproduced with permission from H.
Takahashi and Y. Tanimura, J. Chem. Phys. 158, 124108 (2023). Copyright 2023
AIP Publishing LLC.

quantum case, they spread out owing to the zero-point oscillation of
the ground state.

In the quantum case, the intensity of the stretching–bending
cross-peak first decreased and then increased with time t2, whereas
in the classical case, the intensity decreased gradually with time. This
was because in the quantum case, the cross-peak arises from the
coherence between the stretching and bending modes, whereas in
the classical case, it arises as a result of population relaxation from
the stretching mode to the bending mode. As shown in Fig. 2, the
intensity of the peak decreased monotonically. By contrast, in the
quantum case, the intensity did not change, and the nodal line of the
peak exhibited a loss of coherence of up to 50 fs.

Except for the region below 50 fs, where the effects of quan-
tum coherence became important, qualitative properties such as
the phase relaxation time, which could be estimated from the posi-
tions of the nodes, did not differ significantly between the classical
and quantum cases. This was because the anharmonicity of the
intramolecular vibrational modes was small, such that no differ-
ence between the quantum and classical dynamical behaviors was
apparent.

B. The three-mode case: Effect of the inter-stretch
coupling

Next, we present the calculation results for the three-mode case,
which include (1) the OH stretching mode with ν1 = 3570 cm−1,
(1′) OH anti-stretching mode with ν1′ = 3470 cm−1, and (2) HOH
bending mode with ν2 = 1710 cm−1. As the stretching and anti-
stretching modes could not be distinguished from the 2D spectral
profiles, it was not feasible to ascertain the model parameters for
each of the two modes and the coupling between them using the
2D IR–Raman-based method. Therefore, we determined these by
referring to the parameters of a similar model for the Brownian
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TABLE II. Parameter values for anharmonic mode–mode coupling and optical
properties in the case of weak inter-stretch coupling.

s − s′ g̃ss′ g̃s2s′ g̃ss′2 μ̃ss′

1 − 1′ −2.5 × 10−3 0.16 −2.1 × 10−3 0
1 − 2 5 × 10−8

−1.3 × 10−2
−2 × 10−4 2.0 × 10−3

1′ − 2 −4 × 10−4 6.2 × 10−2
−6.0 × 10−3 2.0 × 10−3

TABLE III. Parameter values for anharmonic mode–mode coupling and optical prop-
erties in the case of strong inter-stretch coupling. Each mode–mode coupling variable
was set to approximately twice that shown in Table II.

s − s′ g̃ss′ g̃s2s′ g̃ss′2 μ̃ss′

1 − 1′ −5 × 10−3 0.32 −4.2 × 10−3 0
1 − 2 10 × 10−8

−2.6 × 10−2 4 × 10−4 2.0 × 10−3

1′ − 2 −8 × 10−4 1.2 × 10−1
−1.2 × 10−2 2.0 × 10−3

FIG. 3. Third-order 2D correlation IR spectra for stretching and stretching→ bend-
ing motions calculated with the three-mode model consisting of (1) OH stretching
with ν1 = 3570 cm−1, (1′) OH anti-stretching with ν1′ = 3470 cm−1, and (2) HOH
bending with ν2 = 1710 cm−1. The mode–mode coupling strength between these
three modes was chosen to be weak (Table II). The remaining parameters were
the same as in Fig. 1. All the spectral intensities were normalized with respect to
the absolute maximum peak intensity of each diagonal peak.

SDF, which were obtained directly from the MD trajectories using
a machine learning (ML) approach.23 However, given the inherent
differences in models that include polarization, the parameters of
two models differed significantly, including the coupling strength
between the stretching–bending modes. Therefore, we used only
the ratio of the coupling strength between the three intramolecu-
lar modes obtained from the ML approach; its overall magnitude
was used as a parameter, as given in Table II for a weak coupling
case and in Table III for a strong coupling case. It is important
to note that here the resulting coupling between the stretching
modes was so strong that the relative strength of the coupling
between the stretching and bending modes was weaker than in the
two-mode case.

Figure 3 shows 2D correlation IR spectra for the stretching
modes and the stretching → bending cross-peaks, whereas Fig. 4
shows those for the bending mode in the case of weak mode–mode
coupling (Table II). The remaining parameters used are given in

FIG. 4. Results are shown for the same calculations as in Fig. 2, but for bending
modes performed on the three-mode model for weak mode–mode coupling. As
the peak intensity was weaker than that in Fig. 3, the contour interval was tripled
for emphasis.

TABLE IV. Parameter values of the multimode intramolecular LL+SL BO model for
(1) asymmetric stretching, (1′) symmetric stretching, and (2) bending modes. Here,
we set the fundamental frequency to ν0 = 4000 cm−1.

s νs (cm−1) γs/ν0 ζ̃s Ṽ(s)LL Ṽ(s)SL g̃s3 μ̃s μ̃ss

1 3570 5.0 × 10−3 9 0 1.0 −5.0 × 10−1 3.3 1.2 × 10−2

1′ 3470 5.0 × 10−3 9 0 1.0 −5.0 × 10−1 3.3 1.2 × 10−2

2 1710 2 × 10−2 0.8 0 1.0 −7 × 10−1 1.8 0

Table IV. Here, we considered the two stretch modes separately; the
positive (red) 0-1-0 peaks of symmetric and antisymmetric stretch-
ing appear at frequencies of (ω1, ω3) = (3570, 3570) and (3470,
3470) cm−1, respectively, whereas the negative (blue) 0-1-2 peaks
appear at (3470, 3300) and (3570, 3400) cm−1, respectively. This was
because in our classical simulations, each wave packet is localized at
the bottom of the potential, so the peak was not broadened, whereas
in the real system, each peak was broadened and overlapped as a sin-
gle peak owing to quantum effects. In addition, the inhomogeneous
broadening was enhanced owing to the presence of two separate
peaks compared to the two-mode case.

As t2 increased, the 2D peak profiles evolved in time from
homogeneous to inhomogeneous distributions. The t2 dependence
of the stretching peaks was similar to that of the classical and quan-
tum two-mode cases, with a vibrational dephasing time of about
500 fs. At t2 = 5000 fs, we observed two diagonal peaks from the two
stretching modes and two off-diagonal peaks from the transitions
among them; thus, square-like plateaus appeared in the positive and
negative peaks. To investigate the effects of the frequency difference
between the two stretching modes, we reduced the difference by
20 cm−1. The results, which are presented in the Appendix, show
that formation of square plateaus was suppressed.

The stretching → bending cross-peaks are shown in the lower
panels in Fig. 4. The intensities of these peaks were much weaker
than those shown in Fig. 1 because the anharmonic coupling
between 1-2 and 1′-2 was weaker than that in the two-mode case.
As the stretching → bending peaks arose from two paths, 0-1 and
0-1′, their peak profiles were elongated in the ω1 direction, whereas
there was no elongation in the ω3 direction because the anharmonic-
ities of the two stretching modes were chosen to be the same. As
in the two-mode case, the intensity of the positive and negative
peaks decreased monotonically with increasing t2 in this classical
calculation.
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For t2 = 100 and 5000 fs, we observed a small positive peak
between the pronounced positive and negative peaks. To analyze
this feature, we plotted the 2D IR of the bending mode (Fig. 4); we
observed that the peak position of the bending mode in the ω3 direc-
tion was higher than those of the stretching → bending peaks. This
indicated that the dominant contribution of the signal came from
the 2-1 transition of the bending mode, which was lower than the
1-0 transition frequency owing to the anharmonicity of the bending
mode. Given that μ1or1′ ≈ 2μ2, the second excited state of the bending
mode was effectively excited by the stretching mode through anhar-
monic couplings g̃221 and g̃221′ . Consequently, the contribution of
the 2-1 transition was greater than that of the 1-0 transition. The
negative peak from the 2-3 transition and the positive peak from
the 1-0 transition partially canceled each other out. The small peak
between the positive and negative peaks in the stretching → bend-
ing spectrum can be considered to be a remnant of the 1-0 transition
peak.

The results for the strong mode–mode coupling case are shown
in Fig. 5. Owing to the increased strengths of the 1-2 and 1′-2
modes, the stretching → bending cross-peak became more pro-
nounced compared to that shown in Fig. 3, whereas the intensity of
the stretching peaks was suppressed. Other than these changes, the
overall peak profile remained largely unchanged as the mode–mode
coupling strength increased. As the mode–mode coupling mech-
anism had a minimal impact on the excitation and de-excitation
processes of the bending modes, the peak profiles shown in Fig. 6
remained consistent even with stronger coupling. These behaviors
were also observed in the results shown in the Appendix, where

FIG. 5. Results are shown for the same calculations as in Fig. 3, except that we
set the strong mode–mode coupling (Table III). All the spectral intensities were
normalized with respect to the absolute value of the maximum peak intensity of
each diagonal peak.

FIG. 6. Results are shown for the same calculations as in Fig. 2, but for bending
modes. As the peak intensity was weak compared to that in Fig. 5, the contour
interval was tripled for emphasis.

the frequency difference between stretching and anti-stretching was
reduced.

IV. CONCLUSION
Although limited to the classical case, we have developed a

CHFPE-based theory for an anharmonic multimode LL+SL Brow-
nian model, enabling calculation of ultrafast 2D vibrational spectra
by considering any three modes of inter- and intra-molecular vibra-
tion. Using this framework, we have simulated 2D-correlated IR
spectra for the stretching mode, the anti-stretching mode, and the
bending mode of liquid water. Except for the region shorter than
50 fs, where the effects of quantum coherence became impor-
tant, the computed 2D spectra exhibited trends akin to those of
experimental observations, including trends in qualitative prop-
erties such as increased inhomogeneous broadening and asym-
metric profiles of the positive and negative peaks in the stretch-
ing modes. However, we were unable to replicate the elongation
of the negative stretching peak observed experimentally in the
low-frequency direction.6–8 This elongation could be attributed to
strong anharmonicity in the stretching mode potential, possibly
a potential with a local minimum. The effects of combination
bands of libration and bending modes in 2D IR9 remain unex-
plored, as do the effects of anharmonicity and mode–mode coupling
between low-frequency intermolecular modes in 2D THz–Raman
spectra.12–16

Our approach is also suitable for performing such calculations
for any solute molecules in a solvent. Nevertheless, the selection of
models and model parameters should be validated through com-
parison with the results obtained using advanced experimental and
simulation techniques.
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FIG. 7. Third-order 2D correlation IR spectra for the three modes: (1) the OH
stretching mode with ν1 = 3560 cm−1, (1′) the OH anti-stretching mode with ν1′

= 3480 cm−1, and (2) HOH bending motions with ν2 = 1710 cm−1. The interaction
between the stretching and anti-stretching modes was weak (Table II). The remain-
ing parameters were the same as in Fig. 1. All spectral intensities were normalized
with respect to the absolute value of the maximum peak intensity of each diagonal
peak.

FIG. 8. Same calculations were performed as in Fig. 7; in addition to this, we set
the strong coupling (Table III). All spectral intensities were normalized with respect
to the absolute value of the maximum peak intensity of each diagonal peak.

APPENDIX: DIFFERENT FREQUENCY SETS
FOR STRETCHING MODES

In addition to the coupling strength between the two stretching
modes, we modified their fundamental frequencies (Figs. 3 and 5). In
particular, (1) the OH stretching mode was changed from ν1 = 3570
to 3560 cm−1, and (1′) the anti-stretching mode was altered from
ν1′ = 3470–3480 cm−1. All other parameters remained consistent
with those shown in Figs. 3 and 5.

The behaviors of the 2D peak profiles shown in Figs. 7 and 8
did not differ significantly from those shown in Figs. 3 and 5. How-
ever, the vibrational coherence, indicated by the nodal line at t0 = 0,
slightly increased as the resonance frequency decreased because the
two resonance peaks were closer together. They merged at a smaller
t2 owing to vibrational dephasing. The formation of a square-like
plateau in the positive and negative peaks at t2 = 5000 fs was also
suppressed.

For the stretching→ bending spectra, the three peaks could be
more clearly observed because of the more effective energy trans-
fer from the two stretching modes to the second excited state of the
bending mode.
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