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ABSTRACT
We have developed a thermodynamic theory in the non-equilibrium regime, which we describe as a thermodynamic system–bath model
[Koyanagi and Tanimura, J. Chem. Phys. 160, 234112 (2024)]. Based on the dimensionless (DL) minimum work principle, non-equilibrium
thermodynamic potentials are expressed in terms of non-equilibrium extensive and intensive variables in time derivative form. This is made
possible by incorporating the entropy production rate into the definition of non-equilibrium thermodynamic potentials. These potentials can
be evaluated from the DL non-equilibrium-to-equilibrium minimum work principle, which is derived from the principle of DL minimum
work and is equivalent to the second law of thermodynamics. We thus obtain the non-equilibrium Massieu–Planck potentials as entropic
potentials and the non-equilibrium Helmholtz–Gibbs potentials as free energies. Unlike the fluctuation theorem and stochastic thermody-
namics theory, this theory does not require the assumption of a factorized initial condition and is valid in the full quantum regime, where
the system and bath are quantum mechanically entangled. Our results are numerically verified by simulating a thermostatic Stirling engine
consisting of two isothermal processes and two thermostatic processes using the quantum hierarchical Fokker–Planck equations and the
classical Kramers equation derived from the thermodynamic system–bath model. We then show that, from weak to strong system–bath
interactions, the thermodynamic process can be analyzed using a non-equilibrium work diagram analogous to the equilibrium one for given
time-dependent intensive variables. The results can be used to develop efficient heat machines in non-equilibrium regimes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0220685

I. INTRODUCTION

Ever since Carnot explored the efficiency of heat engines
200 years ago,1 there have been longstanding attempts to study
thermodynamics in non-equilibrium regimes driven by academic
curiosity and practical interest. In particular, recent advances in
nanotechnology have led to increased interest in the study of the
thermodynamics of microscopic systems.2–31

As a kinetic theory, such phenomena are typically explained
using open quantum dynamics theories based on the system–bath
(SB) model.32–35 Although thermodynamics is a system-
independent theory, it is derived from the presence of a heat
bath and is consistent with theories based on the SB model.24 The
main (subsystem) system of the SB model can be described from a
simple two-level system to complex molecular systems with many

degrees of freedom, and it is also possible to take the classical limit
in the case of a system described in phase space.33–40 Under the
condition of a heat bath with infinite degrees of freedom, the total
system irreversibly relaxes toward its equilibrium state in time, so
the second law of thermodynamics is naturally obeyed without the
need for the assumption of ergodicity as a dynamical system.38–41

However, to investigate whether the thermodynamic laws are
satisfied even in quantum cases where the subsystem and bath are
quantum mechanically entangled, it is necessary to treat the bath in
a non-Markovian, non-perturbative, and non-factorized manner so
that the thermal equilibrium state of the total system satisfies the
energy conservation law, including the SB interaction. Thus, equa-
tions of motion derived using the Markovian or rotational wave (or
secular) approximation, such as the Lindblad equation and quantum
master equation, can only be applied to high-temperature regions

J. Chem. Phys. 161, 114113 (2024); doi: 10.1063/5.0220685 161, 114113-1

Published under an exclusive license by AIP Publishing

 20 Septem
ber 2024 01:54:06

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0220685
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0220685
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0220685&domain=pdf&date_stamp=2024-September-18
https://doi.org/10.1063/5.0220685
https://orcid.org/0000-0002-8607-1699
https://orcid.org/0000-0002-7913-054X
mailto:koyanagi.syoki.36z@st.kyoto-u.jp
mailto:tanimura.yoshitaka.5w@kyoto-u.jp
https://doi.org/10.1063/5.0220685


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where the subsystem exhibits semiclassical dynamics.38–41 There-
fore, the validity of theories based on the Markov assumption42 or
those based on factorized initial conditions, such as the fluctuation
theorem13–15 and stochastic thermodynamics16–23 in the quantum
case, should be carefully examined.

Over the past 30 years, several methodologies have been devel-
oped to accurately describe the effects of quantum entanglement
in condensed systems while maintaining strict energy conserva-
tion to satisfy the first law of thermodynamics. Such methods
include the hierarchical equations of motion (HEOM),36–41,43 the
quasi-adiabatic path integral (QUAPI),44–50 and multiconfigura-
tional time-dependent Hartree (MCTDH),51–53 in historical order.
Among these, the HEOM approach is ideal for thermodynamic
investigations, not only because it can perform numerically “exact”
dynamic simulations but also because it can evaluate the change
in energy of the heat bath and the SB interaction separately, even
for processes far from equilibrium.28–31,54–62 Note that although not
numerically “exact,” several non-perturbative approaches have also
been developed specifically for thermodynamic systems.63–65

While the difficulty of numerical simulation has been solved,
a fundamental difference exists between open quantum dynamics
theory, which is based on a first-principles description of kinetic
systems from a microscopic perspective, and thermodynamic the-
ory, which is based on a phenomenological description of thermal
systems from a macroscopic perspective. For example, in quantum
mechanics, observables are defined as expectation values, whereas in
thermodynamics, they are described by macroscopic intensive and
extensive variables. Furthermore, quantum mechanics is a formal-
ism for time evolution, whereas thermodynamics deals primarily
with static and quasi-static states near thermal equilibrium. In this
respect, most quantum thermodynamics studies are merely kinetic
simulations of open quantum dynamics, and their relation to ther-
modynamics has not been studied in depth. Therefore, the fun-
damental difference between microscopic quantum mechanics and
macroscopic thermodynamics raises many open questions, such as
whether the Carnot limit can be violated in a quantum case or the
existence of Maxwell’s demon.

The virtue of thermodynamics lies in its ability to describe
macroscopic thermal phenomena resulting from complex micro-
scopic interactions in a system-independent manner, as changes in
thermodynamic potentials described as interrelated intensive and
extensive variables through Legendre transformations. This virtue
should be preserved when developing quantum thermodynamic the-
ory rather than open quantum dynamical theory, although in either
case, the theory must be specific to the SB model.

The assumption of a factorized initial state is essential for
the application of stochastic thermodynamics and the fluctuation
theorem so that these theories cannot describe the transitions
between states in which the system and the bath are entangled.
In addition, in practice, many quantum thermodynamics argu-
ments treat a heat bath perturbatively, assuming Markovian time
evolution.13–17 It has been found that the Gibbs energy can be
obtained directly from kinetic simulations even in the case of non-
Markovian and non-perturbative SB interaction at low temperature,
where quantum entanglement between the system and the bath plays
an essential role.28,29,58,59 This approach is based on the minimum
work principle (or Kelvin–Planck statement), expressed as W(t)
≥ ΔG(t), where W(t) is the work performed by the outside on the

subsystem by external fields and ΔG(t) is the change in free energy,
by evaluating the work in a quasi-static process,28,29 which allows
us to draw a work diagram corresponding to the P–V diagram.58,59

However, even with this approach, the contributions of temperature
T and entropy S to the thermodynamic potential expressed as TdS
and SdT cannot be evaluated because the minimum work principle
is defined as an isothermal process dT = 0.

To overcome this limitation, we developed a thermostatic SB
model that is defined by a system coupled to multiple heat baths at
different temperatures.61,62 We then extended the minimum work
principle to thermostatic processes in dimensionless (DL) form
(the DL minimum work principle) as W̃(t) ≥ ΔΞ(t), where W̃(t)
≡ β(t)W(t) is the DL (entropic) work, β(t) ≡ 1/kBT(t) (where kB
is the Boltzmann constant) is the time-dependent inverse tempera-
ture, and ΔΞ is the change in the DL Planck potential.61 Not only
intensive variables but also extensive variables, which are related
by time-dependent Legendre transformations, were introduced as
quantum expectation values of the SB system.

The validity of these results was verified using the numerically
“exact” HEOM formalism. For thermodynamic studies, the HEOM
approach has been used for spin-boson-based systems, taking
advantage of the ability to evaluate the energy changes of the system,
interaction, and bath, respectively, even under non-perturbative and
non-Markovian conditions.28–31,58–60 Here, we employed the HEOM
formalism for an anharmonic quantum Brownian model to con-
struct a thermodynamic theory that is valid for both classical and
quantum cases. Restricting to the case of an Ohmic spectral dis-
tribution function (SDF), we derived the thermostatic quantum
Fokker–Planck equations (T-QFPE)61,62 on the basis of the low-
temperature quantum Fokker–Planck equations (LT-QFPE) in the
quantum case and the Kramers equation in the classical case.66 In
the classical and high-temperature limits, the T-QFPE are equiva-
lent to the Langevin equation, where a Markovian description can
be applicable, but at low temperatures, owing to quantum entan-
glement with the bath (bathentanglement),40 the subsystem follows
non-factorial and non-Markovian dynamics, and its equilibrium
state deviates from the Boltzmann distribution. This indicates that
thermodynamics in the fully quantum regime cannot be described
by a theory based on the Markovian assumption.60,62

Although these results were restricted to quasi-static cases, the
thermodynamic potentials, intensive and extensive variables, and
Legendre transformations were defined in such a way that they
hold for any non-equilibrium process. Taking advantage of this,
we extend our thermodynamic theory here to the non-equilibrium
regime.

The remainder of this paper is organized as follows. In Sec. II,
our previous results about thermodynamics as applied to work in
a system-independent manner are summarized. We then derive the
principle of non-equilibrium DL minimum work to obtain the DL
Massieu–Planck potential and Helmholtz–Gibbs potentials in the
non-equilibrium regime. Results are verified in Sec. III by numer-
ical simulations using the thermostatic SB model. Finally, Sec. IV
presents concluding remarks.

II. REFLECTIONS ON MOTIVE POWER OF HEAT
In our previous paper,61 we presented system-specific thermo-

dynamic laws described as a system–bath model on the basis of open
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quantum dynamics theory. Here, we develop the same laws by intro-
ducing several thermodynamic “statements” without going into the
details of the system, as in traditional thermodynamic theory. By
doing so, we clarify the distinctive features of thermodynamic theory
that allow it to treat systems in non-equilibrium regimes.

A. Laws of thermodynamics applied to work
We consider a thermodynamic system consisting of subsystem

A and heat bath B at the inverse temperature β(t). The presence
of a heat bath temperature can be regarded as a consequence of
the zeroth law of thermodynamics, which states the existence of
a unique equilibrium state.67 Although not well known, the minus
first law of thermodynamics was introduced some time ago to state
the existence of time-irreversible processes toward a unique equi-
librium state.68,69 The dynamics of the SB model comply with this
law.

An important statement of thermodynamics is that thermo-
dynamic systems are described in terms of intensive and extensive
variables. In particular, extensive variables that are proportional to
the size are essential. This statement is called the fourth law.67 How-
ever, this is the premise of thermodynamics, and we would like to
call it the minus second law of thermodynamics because this is the
central dogma in the classical and quantum thermodynamics that
we are constructing.

The energy of the subsystem corresponds to the internal energy
and is expressed as UA(t), which changes with time owing to
changes in the bath temperature. Internal energy is an extensive
variable, whereas inverse temperature is an intensive variable. The
external perturbation considered here is expressed as −x(t)XA(t),
where x(t) and XA(t) are intensive and extensive variables, respec-
tively. In traditional thermodynamics, x(t) is derived from the Euler
relation. We then introduce the total energy, which is related to
the enthalpy by HA(t) = UA(t) − x(t)XA(t), which can also be
regarded as the Legendre transformation between internal energy
and enthalpy.

Because UA(t) is the conjugate variable of β(t), we intro-
duce the DL (or entropic) internal energy denoted by ŨA(t), where
B̃(t) ≡ β(t)B(t) for any variable B(t). Because β(t) diverges for
T → 0, states with T = 0 do not exist. Therefore, the introduction
of DL variables corresponds to the third law of thermodynamics.

From the time derivative of the DL internal energy ŨA(t), we
obtain

dŨA(t)
dt

= dW̃ext
A (t)
dt

+ dQ̃ext
A (t)
dt

, (1)

where

dW̃ext
A (t)
dt

= UA(t)
dβ(t)

dt
+ x̃(t)dXA(t)

dt
, (2)

and

dQ̃ext
A (t)
dt

≡ β(t)dUA(t)
dt

− x̃(t)dXA(t)
dt

, (3)

and W̃ext
A (t) and Q̃ext

A (t) represent the DL (or entropic) exten-
sive work defined as being performed by the outside and DL (or
entropic) extensive heat, respectively. The time derivative of W̃ext

A (t)
corresponds to the DL extensive power. For the enthalpy, we have

dH̃A(t)
dt

= dW̃ int
A (t)
dt

+ dQ̃ext
A (t)
dt

, (4)

where

dW̃ int
A (t)
dt

≡ UA(t)
dβ(t)

dt
− XA(t)

dx̃(t)
dt

, (5)

and W̃ int
A (t) represents the DL intensive work. The time derivative of

W̃ int
A (t) then corresponds to the DL intensive power. Equations (1)

and (4) correspond to the first law of thermodynamics.
From the definitions, these intensive and extensive vari-

ables satisfy the time-dependent Legendre (TDL) transformation
expressed as follows:

dW̃ int
A (t)
dt

= dW̃ext
A (t)
dt

− d
dt
[x̃(t)XA(t)]. (6)

Equation (1) can also be expressed in the form of a TDL transforma-
tion as

dW̃ext
A (t)
dt

= −dQ̃ext
A (t)
dt

+ d
dt
[β(t)UA(t)]. (7)

The DL intensive heat Q̃int
A (t) can also be defined from Q̃ext

A (t)
using the TDL [Eq. (A2) in Appendix A]. The above-mentioned
equations, including the first law of thermodynamics, are described
in terms of intensive variables β(t) and x̃(t) and extensive vari-
ables UA(t) and XA(t) and hold for any non-equilibrium processes.
While these intensive and extensive variables are the state variables
because they are kinetic observables at time t, work and heat are not
state variables.

As the second law of thermodynamics, we adopt the DL
minimum work principle for the subsystem moving from one
equilibrium state to another, thereby extending the Kelvin–Planck
statement for isothermal processes to thermostatic processes. For
work defined as being performed from the outside on the subsystem,
we have

W̃ext
A ≥ −ΔΦqst

A , (8)

where Φqst
A is the DL Massieu potential70,71 and equality hold under

quasi-static changes in the natural variables β(t) and XA(t) as
Φqst

A [β
qst, Xqst

A ] = W̃ext
A [βqst, Xqst

A ]. The above inequality states that for
any process occurring between two states, the work performed by
the outside is minimized if the process is quasi-static (or reversible)
because no energy is dissipated in the heat bath. Note that if we
define work as being performed by the subsystem on the out-
side, the inequality in Eq. (8) is reversed, and the relationship is
called the maximum work principle (on the outside). Although
not mathematically rigorous, the derivation of Eq. (8) is described
in Appendix A of Ref. 61. Using the TDL transformation (6),
we also obtain the Planck potential71,72 in terms of natural vari-
ables expressed as Ξqst

A [β
qst, x̃ qst] (see Appendix A). Similar expres-

sions for Planck functions were derived on the basis of stochas-
tic thermodynamics.19,21,22 However, our expression was obtained
from the well-defined kinetic system and is valid even under
non-factorized SB interactions, where bathentanglement plays an
essential role. Therefore, the value of ΔΦqst

A appearing in Eq. (8)
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is generally different from the value evaluated from stochastic
thermodynamics.

For the DL extensive heat Q̃ext
A (t), we have

Q̃ext
A ≤ ΔΛqst

A , (9)

which corresponds to the principle of maximum entropy, where
Λqst

A [U
qst
A , Xqst

A ] is the entropic potential. Because both natural vari-
ables are extensive, this potential is fundamental, and we call it the
Massieu entropy (M-entropy). Using the TDL transformation given
by Eq. (A2), we also obtain the Planck entropy (P-entropy) defined
by Γqst

A [U
qst
A , x̃ qst] from Q̃int

A (t) (see Appendix A). Similar to the
entropy obtained from the partition function in statistical physics,
this entropy is a function of the intensive variable x̃ qst.

Here, as the conjugate variable for β(t), we chose the internal
energy Uqst

A , which is considered a fundamental variable in thermo-
dynamics. As demonstrated in our previous paper,61 enthalpy Hqst

A
could also be chosen as the conjugate variable for β(t). In such a
case, there are also two entropies, one involving both extensive vari-
ables (Clausius entropy or C-entropy) and one intensive variable
with respect to external forces (Boltzmann entropy or B-entropy).
The B-entropy and M-entropy values are related to the others by
Legendre transformations between Uqst

A and Hqst
A , and the values

do not change, although the former includes one intensive vari-
able, whereas the latter includes extensive variables only. However,
there is no explicit relationship between C-entropy and M-entropy
because the Legendre transformations between two entropies in the
Uqst

A representation and the Hqst
A representation are different (see

Appendix D in Ref. 61). The Massieu and Planck potentials are
equivalent to the entropy potentials introduced earlier.73

The total differential form of the Helmholtz–Gibbs potentials
can be derived from the Massieu–Planck potentials using the defini-
tions Fqst

A (t) = −Φqst
A (t)/β

qst(t) and Gqst
A (t) = −Ξqst

A (t)/β
qst(t). The

results are summarized in Table VI in Appendix A.

B. Thermodynamic potentials in a non-equilibrium
regime
1. The DL non-equilibrium minimum work principle

On the basis of Eq. (8), we define thermodynamic poten-
tials applicable to the non-equilibrium regime. Consider a non-
equilibrium state A and an equilibrium state n. The DL non-
equilibrium-to-equilibrium minimum work principle for A→ n
is expressed as (see Appendix B)

(W̃ext
A )A→n ≥ −(ΔΦneq

A )A→n, (10)

where Φneq
A (t) is the non-equilibrium Massieu potential. This

inequality indicates that the path from non-equilibrium to equilib-
rium has a lower bound on work. In engineering, the effective energy
from non-equilibrium to equilibrium is referred to as exergy.74 The
non-equilibrium thermodynamic potential introduced here can be
regarded as a generalization of it.

The difference between (W̃ext
A )A→n and −(ΔΦneq

A )A→n corre-
sponds to the entropy production defined as

(ΣA)A→n = (W̃ext
A )A→n + (ΔΦneq

A )A→n ≥ 0. (11)

For two non-equilibrium states A and B, we have (ΣA)A→B
= (ΣA)A→n − (ΣA)B→n. Therefore, the entropy production rate for
any non-equilibrium process at times t and t + dt (where dt is an
infinitesimal time) is expressed as

dΣA(t)
dt

= dW̃ext
A (t)
dt

+ dΦneq
A (t)
dt

. (12)

As shown in Appendix B, the entropy production rate is always
positive, i.e., dΣA(t)/dt ≥ 0. Therefore, we have the inequality
(W̃ext

A )min
A→B ≥ −(ΔΦneq

A )A→B or,

dW̃ext
A (t)
dt

≥ −dΦneq
A (t)
dt

, (13)

which we call the DL non-equilibrium minimum work principle.
While W̃ext

A (t) and ΣA(t) are not state variables because they
depend on a path, Φneq

A (t) is a state variable defined by the non-
equilibrium-to-equilibrium minimum work path. When state B is
on the non-equilibrium-to-equilibrium minimum work path from
A to n, equality in Eq. (13) holds.

Using Eqs. (2) and (12), we obtain the time derivative form of
the non-equilibrium Massieu potential as

dΦneq
A (t)
dt

= −Uneq
A

dβ(t)
dt
− x̃(t)dXneq

A (t)
dt

+ dΣA(t)
dt

. (14)

The convexity of DL potentials is discussed on the basis of the
SB model in Appendix C. Therefore, these can be regarded as
thermodynamic potentials.

Using Eq. (6), we have the non-equilibrium Planck potential
expressed as

dΞneq
A (t)
dt

= −Uneq
A

dβ(t)
dt
+ Xneq

A (t)
dx̃(t)

dt
+ dΣA(t)

dt
. (15)

The M-entropy Λneq
A (t) and P-entropy Γneq

A (t) can be evaluated
from the TDL transformations (6) and (7). The non-equilibrium
potentials satisfy the following Legendre transformations:

Ξneq
A (t) = Φneq

A (t) + x̃(t)Xneq
A (t), (16)

and

Λneq
A (t) = Φneq

A (t) + β(t)Uneq
A (t). (17)

The time derivative forms of the DL non-equilibrium entropic
potentials are summarized in Table I. Note that the entropic poten-
tials, the intensive variables, and the non-equilibrium extensive
variables are state variables, whereas their time derivatives are not
state variables.

As shown in Appendix D, the non-equilibrium Massieu poten-
tial is always smaller than the quasi-static Massieu potential. This
indicates that the non-equilibrium Massieu potential is minimum
when the state is equilibrium. In the quasi-static case, Table I
is reduced to Table V (Appendix A). Therefore, we can regard
these potentials as extensions of the thermodynamic potentials to
a non-equilibrium regime.

From Eqs. (12) and (17), the entropy production rate is
expressed using the non-equilibrium M-entropy as

dΣA(t)
dt

= dΛneq
A (t)
dt

− dQ̃ext
A (t)
dt

. (18)
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TABLE I. Time derivative forms of the non-equilibrium (neq) Massieu–Planck potentials as functions of intensive variables
β(t) and x̃(t) and extensive variables Uneq

A (t) and Xneq
A (t). Of the DL entropies, the commonly used one, which we call the

Massieu entropy (M-entropy), involves only extensive variables and is denoted by Λneq
A [U

neq
A (t), Xneq

A (t)], whereas the less

widely used one, which we call the Planck entropy (P-entropy), is denoted by Γqst
A [U

qst
A , x̃]. Because heat is always lost in

non-equilibrium processes, the entropy production rate dΣA/dt appears in the equations. Each potential is related to others
via Legendre transformations shown in the final column.

neq DL
thermodynamic pot. Differential form Natural var.

Legendre
transformation

Massieu d
dt Φneq

A = −Uneq
A

d
dt β − x̃ d

dt Xneq
A + d

dt ΣA β, Xneq
A ⋅ ⋅ ⋅

Planck d
dt Ξneq

A = −Uneq
A

d
dt β + Xneq

A
d
dt x̃ + d

dt ΣA β, x̃ Ξneq
A = Φneq

A + x̃Xneq
A

M-entropy d
dt Λneq

A = β d
dt Uneq

A − x̃ d
dt Xneq

A + d
dt ΣA Uneq

A , Xneq
A Λneq

A = Φneq
A + βUneq

A
P-entropy d

dt Γneq
A = β d

dt Uneq
A + Xneq

A
d
dt x̃ + d

dt ΣA Uneq
A , x̃ Γneq

A = Λneq
A + x̃Xneq

A

2. Non-equilibrium Helmholtz–Gibbs potentials
We introduce non-equilibrium Helmholtz and Gibbs energies

defined as Fneq
A (t) = −Φneq

A (t)/β(t) and Gneq
A (t) = −Ξneq

A (t)/β(t).
Because dβ(t)/dt = −(1/kBT2(t))dT(t)/dt, we obtain the time
derivative forms of these from Eqs. (14) and (15) as

dFneq
A (t)
dt

= −Sneq
A (t)

dT(t)
dt
+ x(t)dXneq

A (t)
dt

+ dQwst
A (t)
dt

, (19)

and

dGneq
A (t)
dt

= −Sneq
A (t)

dT(t)
dt
− Xneq

A (t)
dx(t)

dt
+ dQwst

A (t)
dt

, (20)

where Sneq
A (t) = kBΛneq

A (t) is a non-equilibrium entropy, and we
have introduced the waste heat current as

dQwst
A (t)
dt

= − 1
β(t)

dΣA(t)
dt

. (21)

From Eq. (16), we obtain the TDL transformation between the non-
equilibrium Gibbs and Helmholtz potentials as

Fneq
A (t) = Gneq

A (t) + x(t)Xneq
A (t). (22)

Solving Eq. (17) for Uneq
A (t) yields the following TDL transfor-

mations:

Uneq
A (t) = Fneq

A (t) + T(t)Sneq
A (t). (23)

From the above-mentioned equations, we obtain the time deriva-
tive expressions for the enthalpy and internal energy. The results
are summarized in Table II. These results are reduced to those in
Table VI (Appendix A) for the quasi-static case. Therefore, we can
regard these potentials as extensions of thermodynamic potentials to
a non-equilibrium regime.

Dividing both sides of Eq. (3) by β(t) yields the first law of
thermodynamics expressed for the internal energy as

dUneq
A (t)
dt

= dWext
A (t)
dt

+ dQext
A (t)
dt

, (24)

where

dQext
A (t)
dt

= 1
β(t)

dQ̃ext
A (t)
dt

, (25)

is the extensive heat current. From Eqs. (18) and (25), we can
evaluate the entropy production rate as

dΣA(t)
dt

= 1
kB
{dSneq

A (t)
dt

− 1
T(t)

dQext
A (t)
dt

}. (26)

TABLE II. Time derivative forms of the non-equilibrium (neq) Helmholtz–Gibbs potentials as functions of intensive variables
T(t) and x(t) and extensive variables Sneq

A (t) and Xneq
A (t), which are interrelated through the Legendre transformations

shown in the final column. Because heat is always lost in non-equilibrium processes, the waste heat Qwst
A appears in the

equations.

neq thermodynamic
pot. Differential form Natural var.

Legendre
transformation

Helmholtz energy d
dt Fneq

A = −Sneq
A

d
dt T + x d

dt Xneq
A + d

dt Qwst
A T, Xneq

A ⋅ ⋅ ⋅
Gibbs energy d

dt Gneq
A = −Sneq

A
d
dt T − Xneq

A
d
dt x + d

dt Qwst
A T, x Gneq

A = Fneq
A − xXneq

A
Internal energy d

dt Uneq
A = T d

dt Sneq
A + x d

dt Xneq
A + d

dt Qwst
A Sneq

A , Xneq
A Uneq

A = Fneq
A + TSneq

A
Enthalpy d

dt Hneq
A = T d

dt Sneq
A − Xneq

A
d
dt x + d

dt Qwst
A Sneq

A , x Hneq
A = Uneq

A − xXneq
A
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In the isothermal case, by integrating both sides of the two
equilibrium states over time t, we obtain28,58

ΣA(t) =
1
kB
{ΔSqst

A −
Qext

A

T
}. (27)

The non-equilibrium Gibbs energy satisfies

Sneq
A (t) = −(

∂Gneq
A

∂T(t))x(t),Q̃ wst
, (28)

XA(t) = −(
∂Gneq

A
∂x(t))T(t),Q̃ wst

, (29)

and,

HA(t) = −T2(t) ∂

∂T(t)(
Gneq

A (t)
T(t) )x(t),Q̃ wst

. (30)

Equation (30) extends the Gibbs–Helmholtz relation to a non-
equilibrium regime.

III. NUMERICAL DEMONSTRATION
Although the results presented in Tables I and II hold for

any non-equilibrium system consisting of subsystem and bath, the
extensive variables and entropy production that appear in these rela-
tionships are system-specific, and there is no general theory on the
basis of which non-equilibrium thermodynamic potentials can be
obtained. However, it is possible to evaluate them as functions of
intensive and extensive variables using an optimization algorithm.
As a demonstration, we evaluate non-equilibrium thermodynamic
potentials numerically using the thermodynamic SB model.61,62

A. Thermodynamic system–bath model
We employed the Ullersma–Caldeira–Leggett (or Brownian)

model,33–35,75–78 which is ideal for thermodynamic simulations
because the subsystem and bath are well defined, and rigorous
numerical solutions can be obtained in both classical and quan-
tum cases under any time-dependent external perturbation. Many
of the favorable features for thermodynamic investigations arise
from the presence of a counter term, which allows us to include the
contribution of the SB interactions in the bath.39–41,77–79

By introducing multiple heat baths at different temperatures
controlled by time-dependent SB coupling functions, we can inves-
tigate isothermal, isentropic, thermostatic, and entropic processes.
The total Hamiltonian for isothermal and thermostatic processes is
written as61,62

Ĥtot(t) = Ĥ0
A + Ĥ′A(t) +

N

∑
k=0

Ĥk
IB(t), (31)

where

Ĥ0
A =

p̂ 2

2m
+U(q̂), (32)

is the unperturbed Hamiltonian of a subsystem with mass m and
potential U(q̂) described by momentum p̂ and position q̂. The inter-
nal energy is then evaluated as Uneq

A (t) = tr{Ĥ0
Aρ̂A(t)}, where ρ̂A(t)

is the reduced density operator of the subsystem. The external per-
turbation is expressed as Ĥ′A(t) ≡ −x(t)X̂A, where X̂A is an operator
of the subsystem coordinate [i.e., X̂A(q̂)], and x(t) is the thermo-
dynamic intensive variable. The extensive variable is evaluated as
Xneq

A (t) = tr{X̂Aρ̂A(t)}.
Although the conventional SB model has been limited to the

investigation of isothermal processes at constant temperature, we
can extend it to describe thermostatic processes in which temper-
ature varies with time by introducing N independent heat baths,
each in the thermal equilibrium state at the inverse temperature
βk ≡ 1/kBTk connected to or disconnected from subsystem A using
the window function ξk(t).61 The kth bath Hamiltonian is expressed
as an ensemble of harmonic oscillators and is given by

Ĥk
IB(t) ≡∑

j

⎧⎪⎪⎨⎪⎪⎩

(p̂ k
j)2

2mj
+

mk
j(ωk

j)2

2

⎡⎢⎢⎢⎣
x̂ k

j −
ck

jAkξk(t)q̂
mk

j(ωk
j)2

⎤⎥⎥⎥⎦

2⎫⎪⎪⎬⎪⎪⎭
, (33)

where the momentum, position, mass, and frequency of the jth bath
oscillator are given by p̂k

j , x̂k
j , mk

j , and ωk
j , respectively. Here, we

consider the situation in which N independent heat baths, each in
the thermal equilibrium state exp (−βkĤk

I+B) at the inverse temper-
ature βk ≡ 1/kBTk, are connected or disconnected to subsystem A
according to a control function ξk(t). The bath temperature can be
effectively expressed as

T(t) =
N

∑
k=1

Tkξk(t), (34)

or the inverse temperature as β(t) = [kBT(t)]−1. As a spectral dis-
tribution function of the kth bath Jk(ω) ≡ ∑ j h̵(ck

jAk)2/(2mk
j)ωk

j

δ(ω − ωk
j), we consider the Ohmic case described by

Jk(ω) = h̵A2
kω

π
, (35)

and assume that the time scale of quantum thermal fluctuations
β(t)h/2π is shorter than the time scale of the external perturbations
β(t) and x(t). This allows us to extend the low-temperature quan-
tum Fokker–Planck equations (LT-QFPE)66 for the set of Wigner
distribution functions Wn⃗(p, q; t), where n⃗ is the indices of hierarchy
members, and the Kramers equation for the phase space distribu-
tion function W(p, q; t) to the thermostatic case by introducing
time-dependent Matsubara frequencies ν(t) = 1/hβ(t). The expres-
sions for the thermodynamic quantum Fokker–Planck equations
(T-QFPE) and thermodynamic Kramers equation (T-KE) are given
in Refs. 61 and 62. The source codes for them are also provided in
the extra material.62

While the HEOM approach to thermodynamics treats the
SB interaction as part of the main system in spin-boson
systems,28–31,58–60 this Brownian model treats it as part of a heat
bath, including the counter term.61,62 Assuming the Ohmic SDF, in
the classical and high-temperature semi-classical cases, the dynam-
ics described by this model exhibit a Markovian feature, which can
be treated in the framework of stochastic thermodynamics, while
in the fully quantum case, it is not only non-Markovian but also
non-factorized owing to bathentanglement. In other words, the
difference between the classical and quantum results represents a
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deviation from Markovian thermodynamics that arises when dealing
with fully quantum processes.

It should be noted that for non-Markovian processes, the
SDF-based description of a thermal bath breaks down when the
correlation time of the noise is longer than the time scale of the
bath temperature change.62 In such cases, prescriptions that simply
replace β with β(t) are not allowed, and the hierarchy members for
each bath at different temperatures must be treated separately.60 In
this way, several baths can be operated simultaneously, although this
is computationally expensive.30,31

B. DL work and extensive variables
We express the solution for reduced density elements under

any x(t) in the Wigner representation using the zeroth member of
the hierarchical Wigner functions as W(p, q, t) ≡W0⃗(p, q; t). In the
classical limit h→ 0, W(q, p; t) corresponds to the classical distribu-
tion function. We use this to define the change in DL intensive work
over time, which corresponds to power and heat flow as follows:

dW̃ int
A (t)
dt

= Uneq
A (t)

dβ(t)
dt
− Xneq

A (t)
dx̃(t)

dt
, (36)

where the extensive variables in the Wigner representation at time t
are expressed as

Xneq
A (t) = trA{XA(q)W(p, q; t)}, (37)

and

Uneq
A (t) = trA{[

p2

2m
+U(q)]W(p, q; t)}. (38)

From the definition (2) of extensive work and the TDL transfor-
mations (6) and (7), the extensive heat current can be evaluated
as

dQext
A (t)
dt

= trA{[
p2

2m
+U(q) − x(t)XA(q)]

∂W(p, q; t)
∂t

}. (39)

C. Evaluation of the non-equilibrium Planck potential
From Eq. (B1), we obtain the following expression for the

non-equilibrium Planck potential (Ξneq
A )k = Ξneq

A [β(tk), x̃(tk)] of the
non-equilibrium-to-equilibrium process k→ nk as

(Ξneq
A )k = (W̃ int

A )min
k→nk
+ (Ξqst

A )nk , (40)

where nk represents the equilibrium state, (W̃ int
A )min

k→nk
is the DL min-

imum intensive work for k→ nk, and (Ξqst
A )nk is the quasi-static

Planck potential at state nk. As shown in Eq. (B5), the right-hand side
of Eq. (40) is independent of the choice of nk; therefore, to evaluate
(Ξneq

A )k, we do not specify nk to minimize (W̃ int
A )k→nk + (Ξ

qst
A )nk .

To perform numerical calculations, we express Eq. (40) with
Eq. (15) in terms of trial functionals βtrial(tk, t′) and x̃ trial(tk, t′) as

Xtarget
A [βtrial(t), xtrial(t)] = Ξqst

A (β
qst
nk , xqst

nk )

+ ∫
t+Δt

t
[UA(t′)

dβtrial(t′)
dt′

− XA(t′)
dx̃ trial(t′)

dt′
]dt′, (41)

where Ξtarget
A [βtrial(t), x̃ trial(t)] is the target function to be mini-

mized and Ξqst
A (β

qst
nk , x̃qst

nk ) is the quasi-static Planck potential at nk,
which is also evaluated from the T-QFPE and T-KE. The DL trial
functional x̃trial

k (t) in Eq. (41) is evaluated from xtrial
k (t) as x̃trial

k (t)
= βtrial

k (t)xtrial
k (t). To reduce the computational cost, we assume that

the optimized trial functionals are constant after the characteris-
tic time for the equilibration Δt, as βtrial

k (tk + Δt) = βqst
nk and xtrial

k
(tk + Δt) = xqst

nk .
As trial functionals for time t′ > tk, we chose the Nβth and Nxth

Taylor expansion forms expressed as

βtrial
k (t′) =

Nβ

∑
n=0

β(n)k (t
′ − tk)n, (42)

and

xtrial
k (t′) =

Nx

∑
n=0

x(n)k (t
′ − tk)n, (43)

where β(n)k and x(n)k are the nth-order Taylor coefficients. Therefore,
the functional minimization of Ξtarget

A [βtrial(t), x̃ trial(t)] becomes a
multivariable functional minimization for β(n)k and x(n)k .

Then, Ξneq
A (t) is evaluated as follows (see Fig. 1). First, we

perform the non-equilibrium simulations for given β(t) and x̃(t)
to obtain Wn⃗(p, q; t) for each tk. The minimum work from the
non-equilibrium state k to the equilibrium state nk expressed as
(W̃ int

A )min
k→nk

is then evaluated by an optimization algorithm for
βtrial

k (t′) and x̃trial
k (t′). From Eq. (40), we set this value as (Ξneq

A )k. By

FIG. 1. Schematic of the evaluation of the non-equilibrium Planck potential Ξneq
A (t)

at tk and tk+1. A non-equilibrium process driven by the intensive variables β(t) and
x̃(t) is described as the non-equilibrium distribution W(p, q; t) expressed by the
black arrows. The equilibrium states for different sets of βqst

nk
and x̃qst

nk
are expressed

by the red dashed line. For each state k to the equilibrium state nk , we mini-
mize (W̃ int

A )k→nk
+ (Ξqst

A )nk by choosing the trial functions βtrial
k (t

′
) and x̃ trial

k (t
′
),

where (W̃ int
A )

min
k→nk

is the DL minimum intensive work for k → nk and (Ξqst
A )nk

is the quasi-static Planck potential at the state nk . We can then evaluate the
non-equilibrium Planck potential at state k as (Ξneq

A )k = (W̃ int
A )

min
k→nk
+ (Ξneq

A )nk.
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repeating this procedure for different k values, we obtain Ξneq
A (tk) at

each step. The other potentials can be evaluated by using the TDL
transformations.

D. Thermostatic quantum and classical Stirling
engines

The non-equilibrium thermodynamic potentials are state vari-
ables as functions of the non-equilibrium intensive and extensive
variables, which are also state variables, whereas Qwst

A is not; in
the quasi-static limit, they reduce to conventional thermodynamic
potentials. These non-equilibrium potentials are useful because they
can be used to analyze thermodynamic processes using work dia-
grams, as in the case of equilibrium thermodynamics. By identifying
a thermodynamic process that minimizes entropy production, we
can construct a heat machine with maximum efficiency under non-
equilibrium conditions, although the efficiency is lower than the
Carnot limit.58,59

Here, we demonstrate how to evaluate non-equilibrium poten-
tials for the case in which β(t) and x(t) are specified. For this pur-
pose, we consider a thermostatic classical/quantum Stirling engine62

consisting of four steps: (i) a hot isothermal process, (ii) a transition
from a hot-to-cold thermostatic process, (iii) a cold isothermal pro-
cess, and (iv) a transition from a cold-to-hot thermostatic process
for an anharmonic potential system. Since the purpose of the calcu-
lation is to illustrate how potentials are calculated, we fix the changes
in β(t) and x(t) as shown in Fig. 2 with τ = 20 and do not optimize
them to improve their efficiency.

1. Simulation details
We performed simulations using the anharmonic poten-

tial system employed in our previous studies.61,62 Therefore, we
considered a quartic anharmonic potential with the external

FIG. 2. Time profiles of (a) the electric field x(t) and (b) the inverse temperature
β(t) for the thermostatic Stirling engine. The red, green, blue, and orange lines
represent (i) hot isothermal, (ii) isoelectric (hot to cold), (iii) cold isothermal, and
(iv) isoelectric (cold to hot) processes, respectively.62 The time t is normalized by
the period of the cycle τ.

TABLE III. Parameter values used for the simulations of the thermostatic Stirling
engine. Here, dx and dp are the mesh sizes for position and momentum, respec-
tively, in Wigner space. The integers N and K are the cutoff numbers used in the
T-QFPE.

A N K dx dp

Classical 0.5–1.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.25 0.25

Quantum
0.5 6 2 0.3 0.4
1.0 7 2 0.3 0.5
1.5 8 2 0.3 0.6

interaction described as XA(q̂) = q̂. The potential function in
Eq. (32) is expressed as

U(q̂) = U2q̂ 2 +U3q̂ 3 +U4q̂ 4, (44)

where the constants are given by U2 = 0.1, U3 = 0.02, and U4 = 0.05.
Numerical calculations were performed to integrate the T-QFPE in
the quantum cases and the T-KE in the classical cases. The detailed
conditions for the numerical calculations, including the working
parameters, are presented in Table III and in Ref. 61. Source code
and results for the quasi-static case are presented in Ref. 62.

To set the trial functions defined in Eqs. (42) and (43), we chose
Nβ = Nx = 5. Then, using the Nelder–Mead method, we minimized
Ξtarget

A [βtrial(t), xtrial(t)] in Eq. (41) with a cutoff time Δt = 1.0. We

FIG. 3. x(t)–Xneq
A (t) diagrams for the thermostatic Stirling engine in the classical

case (1, left column) and quantum case (2, right column) for (a) A = 0.5 (weak),
(b) 1.0 (intermediate), and (c) 1.5 (strong) SB coupling strengths. In each plot, the
four curves (or lines) represent (i) hot isothermal (red), (ii) hot to cold thermostatic
(green), (iii) cold isothermal (blue), and (iv) cold to hot thermostatic (orange) pro-
cesses, respectively. These processes evolve in a counterclockwise manner over
time in a heat engine, whereas they evolve in a clockwise manner over time in a
refrigerator.
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TABLE IV. Work performed in one cycle for the classical and quantum cases for
different SB coupling strengths.

A W (classical) W (quantum)

0.5 (weak) −1.44 × 10−2 −1.07 × 10−2

1.0 (intermediate) −5.77 × 10−3 −3.09 × 10−3

1.5 (strong) 1.01 × 10−2 1.10 × 10−2

evaluated Ξneq
A (t) in 20 steps. The value of the quasi-static Planck

potential Ξqst
A (β

qst, x̃ qst) in Eq. (41) was obtained by integrating the
thermodynamic T-QFPE and the T-KE.

2. Results
Extensive variables Xneq

A (t) and Uneq
A (t) were obtained from

Eqs. (37) and (38), respectively. The non-equilibrium entropy
expressed as Sneq

A (t) = kBΛneq
A (t) was then obtained from Xneq

A (t),
and Uneq

A (t) and Ξneq
A (t) were evaluated according to the proce-

dure described in Sec. III C using the TDL transformations given
by Eqs. (16) and (17). The results are depicted as non-equilibrium
x(t)–Xneq

A (t) and T(t)–Sneq
A (t) diagrams, whose cycle trajectories

are closed because the cycle is stationary and because T(t), Sneq
A (t),

x(t), and Xneq
A (t) are state variables.

We first present the x(t)–Xneq
A (t) diagrams for weak (A = 0.5),

intermediate (A = 1.0), and strong (A = 1.5) SB coupling strengths
in Fig. 3. The results for the quasi-static case are presented in Fig. 5
in Ref. 62.

FIG. 4. T(t)–Sneq
A (t) diagrams for the thermostatic Stirling engine in the classical

case (1, left column) and quantum case (2, right column) for (a) A = 0.5 (weak), (b)
1.0 (intermediate), and (c) 1.5 (strong) SB coupling strengths, respectively. Each
cycle starts with a red arrow, and the four curves represent (i) hot isothermal (red),
(ii) from hot to cold thermostatic (green), (iii) cold isothermal (blue), and (iv) from
cold to hot thermostatic (orange) processes, respectively.

The area enclosed by each diagram corresponds to positive
work when evolving in the counterclockwise direction, whereas neg-
ative work corresponds to clockwise evolution. The work performed
in one cycle is presented in Table IV. In each diagram in Fig. 3, the
red and blue horizontal lines appear because a time delay exists in
the change of Xneq

A (t) with respect to x(t) for the heat bath to take
effect.

As shown in Fig. 3 and Table IV, the larger the SB coupling, the
smaller the quantum effect because it is suppressed by relaxation.66

Therefore, when the coupling is large, dissipation dominates, and the
system becomes a refrigerator (or damper). This is because the time
scales of fluctuation and dissipation differ: in the non-equilibrium
case, dissipation dominates when SB coupling is large, whereas in
the quasi-static case (Fig. 5 in Ref. 62), fluctuations and dissipation
are balanced regardless of the coupling strength. This is a distinct
difference from the Carnot case; the efficiency reaches a maximum
in the intermediate SB coupling region, where A is neither large nor
small.59

Next, we present the T(t)–Sneq
A (t) diagrams in Fig. 4. The

results for the quasi-static case are presented in Fig. 6 in Ref. 62.
The area enclosed by the clockwise curve represents the difference
between the extensive heat and waste heat, Qext

A −Qwst
A , per cycle. In

the quasi-static case (Fig. 6 in Ref. 62), the area agrees with the exten-
sive heat per cycle because Qwst becomes zero. In the thermostatic
processes (green and orange curves), when SB coupling is small, a

FIG. 5. (a) Entropy production rate dΣA(t)/dt, (b) the change of enthalpy ΔHA(t),
and (c) internal energy ΔUA(t), as functions of t. The blue, green, and red curves
represent the weak (A = 0.5), intermediate (A = 1.0), and strong (A = 1.5) SB
coupling cases, respectively. The solid and dashed curves represent the quantum
and classical results, respectively. The plots of the entropy production rate were
time-averaged over 21 steps each using the raw data.
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time delay is observed in the change in Sneq
A (t) with respect to T(t).

This occurs because it takes time for the system to be excited when
thermal fluctuations are small, whereas the delay is almost negligible
when SB coupling is strong.

In Fig. 5, we show the (time-averaged) entropy production
rate, enthalpy, and internal energy as functions of t. As we show in
Sec. II, the entropy production rate is always positive and becomes
large in the isothermal case for larger SB coupling because of
strong dissipation, whereas it becomes small in the thermostatic pro-
cesses for the case of weak SB coupling because fluctuations are
suppressed.

Using the graph of the entropy production rate, we can improve
the cycle efficiency. For instance, in the case of strong coupling,
because a large entropy production rate occurs in isothermal pro-
cesses, increasing the duration of the isothermal processes reduces
the entropy production in the cycle.

For weak SB coupling, both the enthalpy and internal energy in
the classical case agree with those in the quantum case, whereas for
strong SB coupling, they disagree because of bathentanglement.40

IV. CONCLUSIONS
The virtue of thermodynamics lies in its ability to describe,

in a system-independent manner, macroscopic thermal phenom-
ena resulting from complex microscopic interactions as changes in

thermodynamic potentials that are described as interrelated inten-
sive and extensive variables via Legendre transformations.

We developed the laws of thermodynamics as applied to
work in a system-independent manner, based on the princi-
ple of DL minimum work. Subsequently, we have developed
a non-equilibrium thermodynamic theory that describes the
non-equilibrium Massieu–Planck potentials and Helmholtz–Gibbs
potentials in time derivative form in terms of non-equilibrium
extensive and intensive variables, which are state variables along
with entropy production, which is not a state variable. Our results
are summarized in Tables I and II and are consistent with traditional
thermodynamics in a quasi-static case, as presented in Tables V
and VI.

These results have been validated for thermostatic quantum
and classical Stirling engines through numerical simulations based
on the thermodynamic SB model, which can describe both isother-
mal and thermostatic processes. An optimization algorithm was
used to evaluate non-equilibrium thermodynamic potentials. Work
diagrams in non-equilibrium regimes were presented and analyzed.

In this paper, to perform numerical calculations, the external
field was chosen as the intensive variable and the polarization as the
extensive variable. In a Brownian model defined by a potential func-
tion, it is also possible to select pressure and volume as intensive and
extensive variables, as the partition function was evaluated for an
ideal gas.

TABLE V. Total differential expressions for the quasi-static (qst.) entropic potentials as functions of the intensive variables
βqst
(t) and x̃ qst

(t) and the extensive variables Uqst
A (t) and Xqst

A (t). Entropy has two definitions, depending on whether
the work variable is intensive or extensive. Of these DL entropies, the commonly used one, which we call Massieu entropy
(M-entropy), involves only extensive variables and is denoted by Λqst

A [U
qst
A , Xqst

A ], whereas the less widely used one, which

we call Planck entropy (P-entropy), is denoted by Γqst
A [U

qst
A , x̃ qst

]. Whereas the enthalpy Hqst
A (t) was chosen as the natural

variable in Ref. 61, here we chose the internal energy Uqst
A instead. Each potential is related to the others by the Legendre

transformations shown in the final column.

Qst. Potential Differential form Natural var.
Legendre

transformation

Massieu dΦqst
A = −Uqst

A dβqst − x̃ qstdXqst
A βqst, Xqst

A ⋅ ⋅ ⋅
Planck dΞqst

A = −Uqst
A dβqst + Xqst

A dx̃ qst βqst, x̃ qst Ξqst
A = Φqst

A + x̃ qstXqst
A

M-entropy dΛqst
A = βqstdUqst

A − x̃ qstdXqst
A Uqst

A , Xqst
A Λqst

A = Ξqst
A + βqstUqst

A
P-entropy dΓqst

A = βqstdUqst
A + Xqst

A dx̃ qst Uqst
A , x̃ qst Γqst

A = Φqst
A + βqstUqst

A

TABLE VI. Total differential expressions for the quasi-static (qst.) thermodynamic potentials as functions of intensive vari-
ables Tqst

(t) and xqst
(t) and extensive variables Sqst

A (t) and Xqst
A (t). The potentials are related through the Legendre

transformations shown in the final column.61

Qst. potential Differential form Natural var.
Legendre

transformation

Helmholtz dFqst
A = −Sqst

A dTqst + xqstdXqst
A Tqst, Xqst

A ⋅ ⋅ ⋅
Gibbs dGqst

A = −Sqst
A dTqst − Xqst

A dxqst Tqst, xqst Gqst
A = Fqst

A − xqstXqst
A

Internal dUqst
A = TqstdSqst

A + xqstdXqst
A Sqst

A , Xqst
A Uqst

A = Fqst
A + TqstSqst

A
Enthalpy dHqst

A = TqstdSqst
A − Xqst

A dxqst Sqst
A , xqst Hqst

A = Gqst
A + TqstSqst

A
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Although our theory in the non-equilibrium regime is model-
specific, it is possible to test it even in real systems by using opti-
mization algorithms. By designing processes to reduce entropy pro-
duction, efficient heat engines can be developed for non-equilibrium
processes.

In engineering, the effective energy from non-equilibrium to
equilibrium is referred to as exergy.74 The non-equilibrium thermo-
dynamic potentials introduced can be regarded as a generalization of
this concept. This theory provides a methodology to systematically
evaluate and improve it, which should be useful from the perspective
of Sustainable Development Goals (SDGs).
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APPENDIX A: QUASI-STATIC THERMODYNAMIC
POTENTIALS

We introduce the DL intensive heat defined as

dQ̃int
A (t)
dt

≡ β(t)dUA(t)
dt

+ XA(t)
dx̃(t)

dt
, (A1)

which satisfies the Legendre transformation

dQ̃int
A (t)
dt

= dQ̃ext
A (t)
dt

+ d
dt
[x̃(t)XA(t)]. (A2)

Extensive and intensive work and heat W̃ext
A (t), W̃ int

A (t), Q̃ext
A (t), and

Q̃int
A (t) are interrelated via Legendre transformations (6), (7), and

(A2). Therefore, we obtain the inequalities (8), (9),

W̃ int
A ≥ −ΔΞqst

A , (A3)

and,

Q̃int
A ≤ ΔΓqst

A , (A4)

where Γqst
A is the Planck entropy (P-entropy). These are all expres-

sions of the second law of thermodynamics. The total differential
forms of the Massieu–Planck potentials are presented in Table V.

The Helmholtz–Gibbs potentials can be obtained from
the Massieu–Planck potentials using the definitions Fqst

A (t)
= −Φqst

A (t)/β
qst(t) and Gqst

A (t) = −Ξqst
A (t)/β

qst(t). From Eq. (6), we
obtain

Fqst
A (t) = Gqst

A (t) + xqst(t)Xqst
A (t). (A5)

Accordingly, from Eq. (7), we have

Uqst
A (t) = Fqst

A (t) + Tqst(t)Sqst
A (t), (A6)

where we have used dβqst(t)/dt = −(1/kB[Tqst(t)]2)dTqst(t)/dt and
Sqst

A (t) = kBΛqst
A (t).

The total differential forms of the Helmholtz–Gibbs potentials
are presented in Table VI.

APPENDIX B: DL NON-EQUILIBRIUM MINIMUM WORK
PRINCIPLE

Here, we derive fundamental equations to develop the DL non-
equilibrium minimum work principle. Consider two equilibrium
states 1 and 2, which are connected by a quasi-static process (see
Fig. 6). From the principle of DL minimum work [Eq. (8)], the
work performed in this process is equivalent to the difference in the
Massieu potentials: (W̃ext

A )min
1→2 = −(ΔΦqst

A )1→2 ≡ (Φqst
A )1 − (Φqst

A )2,
where n→ n′ represents the transition from any state n to n′. Sepa-
rately, we consider the non-equilibrium state A and introduce the
non-equilibrium process 1→ A (dark blue curve in Fig. 6) and
any process from A to 2 (green and light blue curves). For each
of these processes, the work performed is denoted by (W̃ext

A )1→A
and (W̃ext

A )A→2, respectively. For fixed (W̃ext
A )1→A, the value of

(W̃ext
A )A→2 changes depending on path.

From the second law of thermodynamics [Eq. (8)], we
obtain (W̃ext

A )1→A + (W̃ext
A )A→2 > −(ΔΦqst

A )1→2. This indicates that

FIG. 6. Schematic to derive Eq. (B1). The blue circles 1 and 2 represent the equi-
librium states, and the red square A represents the non-equilibrium state. The
quasi-static work performed for 1→ 2 (red dashed line) is denoted by (W̃ ext

A )
min
1→2,

while the non-equilibrium work from 1 to A (dark blue curve) is denoted by
(W̃ ext

A )1→A. When (W̃ ext
A )1→A is fixed, the value of (W̃ ext

A )A→2 depends on the
path (green and light blue curves). From the second law of thermodynamics, we
have (W ext

A )1→A + (W̃ ext
A )A→2 ≥ −(ΔΦqst

A )1→2. This indicates a lower bound of
work for A→ 2 denoted by (W̃ ext

A )
min
A→2 (light blue curve) and given by Eq. (B1).

J. Chem. Phys. 161, 114113 (2024); doi: 10.1063/5.0220685 161, 114113-11

Published under an exclusive license by AIP Publishing

 20 Septem
ber 2024 01:54:06

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 7. Schematic for deriving the principle of DL non-equilibrium minimum
work expressed by Eq. (B3). We consider two non-equilibrium states A and
B (red square) that are connected by a non-equilibrium process described by
the red arrow for A→ B. The light blue curves A→ 2 and B→ 2 represent
non-equilibrium-to-equilibrium minimum work paths, whose work is denoted by
(W̃ ext

A )
min
A→2 and (W̃ ext

A )
min
B→2, respectively.

(W̃ext
A )A→2 has a lower bound for fixed (W̃ext

A )1→A; otherwise, the
inequality is violated, for example, as follows: −∞ > −(ΔΦqst

A )1→2
− (W̃ext

A )1→A. Using the lower bound of this work, we introduce the
non-equilibrium Massieu potential Φneq

A , defined as

(W̃ext
A )min

A→2 = −[(Φqst
A )2 − (Φneq

A )A]. (B1)

By introducing a second non-equilibrium state B on the path-
way A→ 2 as depicted in Fig. 7, we now discuss the non-equilibrium
transition A→ B (red arrow). We consider the non-equilibrium-to-
equilibrium minimum work from B to 2 (light blue curve), expressed
as

(W̃ext
A )min

B→2 = −[(Φqst
A )2 − (Φneq

A )B]. (B2)

From the inequality (W̃ext
A )A→2 ≥ −[(Φqst

A )2 − (Φneq
A )A] and

Eq. (B2), we obtain

(W̃ext
A )A→B ≥ −(ΔΦneq

A )A→B, (B3)

where (W̃ext
A )A→B ≡ (W̃ext

A )A→2 − (W̃ext
A )min

B→2. Therefore, equality
holds in (B3) when B is on the minimal pathway (A→ 2)min.

Because a non-equilibrium process changes as a function of
time, it is more convenient to use the time derivative form of the
above. Therefore, for the process from A to B at times t and t + dt,
where dt is infinitesimal time, we obtain the following inequality:

dW̃ext
A (t)
dt

≥ −dΦneq
A (t)
dt

. (B4)

This inequality extends the principle of minimum work to a non-
equilibrium regime.

Although we have derived Eqs. (B3) and (B4) for the specific
equilibrium state 2, the value (Φneq

A )A is the same for any quasi-
equilibrium state along βqst(t) and xqst(t). To illustrate this, we
introduce a third equilibrium state 3 and consider the transition
A→ 3 (see Fig. 8). Because (W̃ext

A )min
A→2 + (W̃ext

A )qst
2→3 ≥ (W̃

ext
A )min

A→3

for A→ 2→ 3 and (W̃ext
A )min

A→3 + (W̃ext
A )qst

3→2 ≥ (W̃
ext
A )min

A→2 for A→ 3
→ 2, we have

(Wext
A )min

A→2 + (Φneq
A )2 = (Wext

A )min
A→3 + (Φneq

A )3, (B5)

where we have used (Wext
A )qst

2→3 = (Φ
qst
A )3 − (Φqst

A )2. From Eq. (B1),
this indicates that the non-equilibrium Massieu potential is indepen-
dent of the choice of the equilibrium state 2.

FIG. 8. Schematic showing that the non-equilibrium Massieu potential can be eval-
uated from any equilibrium state 3 instead of 2. To illustrate this, we consider the
non-equilibrium-to-equilibrium path A→ 3, where we introduce a third equilibrium
state denoted by 3 (blue circle). The work between the two equilibrium states is
denoted by (W ext

A )
qst
2→3 and (W ext

A )
qst
3→2, respectively.

Because the other potential is interrelated through TDL
transformations, we obtain

dW̃ int
A (t)
dt

≥ −dΞneq
A (t)
dt

, (B6)

dQ̃ext
A (t)
dt

≤ dΛneq
A (t)
dt

, (B7)

and,

dQ̃int
A (t)
dt

≤ dΓneq
A (t)
dt

. (B8)

For an isothermal case, from the definitions Fneq
A (t)

= −Φneq
A (t)/β and Gneq

A (t) = −Ξneq
A (t)/β, we have

dWext
A (t)
dt

≥ dFneq
A (t)
dt

(B9)

and

dW int
A (t)
dt

≥ dGneq
A (t)
dt

. (B10)

However, unlike in the Massieu–Planck case, the equality in
Eqs. (B9) and (B10) cannot be obtained in general because the min-
imum DL work path in Fig. 6 is evaluated by optimizing both β(t)
and x(t), while β has been fixed to introduce the Helmholtz energy
as Fneq

A (t) = −Φneq
A (t)/β.

The above-mentioned discussion indicates that the inclusion of
the thermostatic process is a key to develop an efficient heat engine
under non-equilibrium conditions.

APPENDIX C: CONVEXITY OF NON-EQUILIBRIUM
THERMODYNAMIC POTENTIALS AS FUNCTIONS
OF EXTENSIVE VARIABLES

To obtain stable thermodynamic properties, the potential must
be a convex function of the work variables. Even in the non-
equilibrium case, we find that convexity holds under certain condi-
tions. Here, we present this in the SB model. Because other potentials
can be discussed similarly, we have limited our discussion to the case
of non-equilibrium Massieu potential.
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FIG. 9. Schematic for deriving convexity relations. The red squares represent the
non-equilibrium states. The arrows are the relaxation paths to equilibrium state 2,
as described by the time-evolution operator ÛA(t, t0). The blue arrow is the DL
minimum work path from state λ.

We consider three non-equilibrium states A, B, and λ
(λ ∈ [0, 1])with the same initial inverse temperature β(t0) at time t0.
We then assume that the state λ satisfies the relation

(WA)λ = (1 − λ)(WA)A + λ(WA)B, (C1)

where (WA)A = (WA(p, q; t))A and (WA)B = (WA(p, q; t))B are
the Wigner distributions in the quantum case (or phase space
distributions in the classical case) in the A and B states. The
time evolution operator of a subsystem is expressed as ÛA(t, t0)
= exp [− ∫L̂ (p, q) dt], where L̂ (p, q) denotes the Liouville opera-
tor, which includes fluctuation and dissipation operators for equili-
bration. In the quantum case, L̂ (p, q) acts on WA, which is repre-
sented by hierarchical elements.39,40,66 We then obtain the relations
between the extensive variable and internal energies as

(XA)λ(t) = (1 − λ)(XA)A(t) + λ(XA)B(t), (C2)

and

(UA)λ(t) = (1 − λ)(UA)A(t) + λ(UA)B(t), (C3)

where we have defined (XA)α(t) = trtot{XA(q)Û tot(t, t0)(Wtot)α}
and (UA)α(t) = trtot{[p2/2 m +U(q)]Û tot(t, t0)(Wtot)α} for
α = A, B, and λ. Therefore, from Eq. (2), the DL extensive work
(Wext

A )α(t, t0) (α = A, B, and λ), performed between times t0 and t
also satisfies the equality

(Wext
A )λ(t, t0) = (1 − λ)(Wext

A )A(t, t0) + λ(Wext
A )B(t, t0). (C4)

The DL minimum work path from the state λ to the equilibrium
state 2 is described by ÛA(t, t0) (see Fig. 9). This indicates that when
t is large, the intensive variables must be β(t)→ β2 and x(t)→ x2,
where β2 and x2 are the values at the equilibrium state 2. Therefore,
processes starting from A and B also relax to the equilibrium state 2
as t →∞. Then, from Eq. (C4), we obtain

(Wext
A )min

λ→2 = (1 − λ)(Wext
A )A→2 + λ(Wext

A )B→2. (C5)

Using the inequality (Wext
A )α→2 ≥ (Wext

A )min
α→2 for the states α = A and

B and Eq. (B1), we obtain the inequality to prove convexity as

(1 − λ)(Φneq
A )A + λ(Φneq

A )B ≤ (Φneq
A )λ, (C6)

where (Φneq
A )α is the non-equilibrium Massieu potential in the

state α (α = A, B, and λ). When A and B are in equilibrium, we
obtain the convexity relation in the quasi-static case for a fixed
inverse temperature using the inequality for the Massieu potential as
Table VIII as61

(1 − λ)(Φqst
A )A + λ(Φqst

A )B ≤ (Φqst
A )λ. (C7)

TABLE VII. Inequalities between the non-equilibrium state at time t1 and the equilibrium state at time t2, with the conditions
under which these inequalities hold. From these inequalities, we find that, for example, for a given inverse temperature and
external field, the non-equilibrium Planck potential takes its maximum value when the state is in equilibrium.

neq potentials Convexity and concavity Condition

Massieu (1 − λ)(Φneq
A )A + λ(Φneq

A )B ≤ (Φneq
A )λ βA = βB = βλ

Planck (1 − λ)(Ξneq
A )A + λ(Ξneq

A )B ≤ (Ξneq
A )λ βA = βB = βλ and x̃A = x̃B = x̃λ

Helmholtz (1 − λ)(Fneq
A )A + λ(Fneq

A )B ≥ (Fneq
A )λ βA = βB = βλ

Gibbs (1 − λ)(Gneq
A )A + λ(Gneq

A )B ≥ (Gneq
A )λ βA = βB = βλ and xA = xB = xλ

TABLE VIII. Inequalities for Massieu–Planck potentials between the non-equilibrium state A at time t1 and the equilibrium
state 2 at time t2, together with the conditions under which these inequalities hold. From these inequalities, we find that,
for example, for a given inverse temperature and intensive variable, the non-equilibrium Planck potential takes its maximum
value when A is in the equilibrium state.

neq potentials Inequalities Condition

Massieu Φqst
A (t2) ≥ Φneq

A (t1) β(t1) = β(t2) and XA(t1) = XA(t2)
Planck Ξqst

A (t2) ≥ Ξneq
A (t1) β(t1) = β(t2) and x̃(t1) = x̃(t2)

C–entropy Λqst
A (t2) ≥ Λneq

A (t1) UA(t1) = UA(t2) and XA(t1) = XA(t2)
B–entropy Γqst

A (t2) ≥ Γneq
A (t1) UA(t1) = UA(t2) and x̃(t1) = x̃(t2)
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TABLE IX. Inequalities for Helmholtz–Gibbs potentials between the non-equilibrium state at time t1 and the equilibrium state
at time t2, with the conditions under which these inequalities hold.

neq potentials Inequalities Condition

Helmholtz Fqst
A (t2) ≤ Fneq

A (t1) T(t1) = T(t2) and XA(t1) = XA(t2)
Gibbs Gqst

A (t2) ≤ Gneq
A (t1) T(t1) = T(t2) and x(t1) = x(t2)

Internal energy UA(t2) ≤ UA(t1) Sneq
A (t1) = Sqst

A (t2) and XA(t1) = XA(t2)
Enthalpy HA(t2) ≤ HA(t1) Sneq

A (t1) = Sqst
A (t2) and x(t1) = x(t2)

The convexity and concavity properties for the other non-
equilibrium thermodynamic potentials are summarized in
Table VII.

APPENDIX D: INEQUALITY BETWEEN
NON-EQUILIBRIUM AND QUASI-STATIC
THERMODYNAMIC POTENTIALS

Under given conditions, the non-equilibrium DL thermody-
namic potentials are smaller than the quasi-static ones. Here, we
derive the inequalities between the quasi-static and non-equilibrium
thermodynamic potentials.

We consider a non-equilibrium-to-equilibrium transition
A→ 2 from time t1 to t2 described by the inverse temperature β(t)
and the extensive variable Xneq

A (t). The DL extensive work in this
process is evaluated as

∫
t2

t1

[UA(t′)
dβ(t′)

dt′
− x̃(t′)dXneq

A (t
′)

dt′
]dt′

= x̃2(Xneq
A (t2) − Xneq

A (t1)), (D1)

where we have assumed that β(t) = β2 for time t ≥ t1 and
x̃(t) = x̃2 for time t > t1 with the intensive variables β2 and x̃2,
allowing the subsystem to relax to the equilibrium state 2 at
time t2. The value of x̃2 is set to satisfy the condition Xneq

A (t2)
= Xneq

A (t1). Because Xneq
A (t2) = (Xqst

A )2 = Xneq
A (t1), the right-hand

side of Eq. (D1) vanishes. Therefore, the net DL extensive work
is zero, and so the DL minimum work principle reduces to
0 ≥ (Φneq

A )A→2, from which it follows that Φqst
A (t2) ≥ Φneq

A (t1).

FIG. 10. Difference between the quasi-static and non-equilibrium Planck potentials
in the quantum and classical cases (solid and dashed curves, respectively) for one
cycle of the thermostatic Stirling engine. The blue, green, and red curves represent
the weak (A = 0.5), intermediate (A = 1.0), and strong (A = 1.5) SB coupling,
respectively.

The inequalities for the other DL thermodynamic potentials
were obtained in the same manner. The results are summarized in
Tables VIII and IX.

In Fig. 10, to illustrate the inequalities presented in Table VIII,
we plot the difference between the quasi-static and non-equilibrium
Planck potential, ΔΞA(t) = Ξqst

A [β(t), x̃(t)] − Ξneq
A (t), for one cycle

of the thermostatic Stirling engine described in Sec. III D. As can
be seen, ΔΞA(t) is always positive and satisfies the inequalities in
Table VIII.
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