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ABSTRACT
We developed a computer code for the thermodynamic quantum Fokker–Planck equations (T-QFPE), derived from a thermodynamic
system–bath model. This model consists of an anharmonic subsystem coupled to multiple Ohmic baths at different temperatures, which
are connected to or disconnected from the subsystem as a function of time. The code numerically integrates the T-QFPE and their classical
expression to simulate isothermal, isentropic, thermostatic, and entropic processes in both quantum and classical cases. The accuracy of the
results was verified by comparing the analytical solutions of the Brownian oscillator. In addition, we illustrated a breakdown of the Markovian
Lindblad-master equation in the pure quantum regime. As a demonstration, we simulated a thermostatic Stirling engine employed to develop
non-equilibrium thermodynamics [S. Koyanagi and Y. Tanimura, J. Chem. Phys. 161, 114113 (2024)] under quasi-static conditions. The
quasi-static thermodynamic potentials, described as intensive and extensive variables, were depicted as work diagrams. In the classical case,
the work done by the external field is independent of the system–bath coupling strength. In contrast, in the quantum case, the work decreases
as the coupling strength increases due to quantum entanglement between the subsystem and bath. The codes were developed for multicore
processors using Open Multi-Processing (OpenMP) and for graphics processing units using the Compute Unified Device Architecture. These
codes are provided in the supplementary material.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225607

I. INTRODUCTION

In contrast to classical thermodynamics, which is a macro-
scopic qualitative theory, quantum thermodynamics, described
by the Hamiltonian, allows for dynamic investigations in addi-
tion to equilibrium cases. A commonly used model for describ-
ing thermodynamics is a system–bath (SB) model, which con-
sists of a subsystem interacting with a harmonic heat bath.1–3

Due to quantum entanglement between the system and the bath
(bathentanglement),4 the quantum SB system exhibits unique prop-
erties compared to the classical one, particularly at low temperatures.
These include the negativity of the noise correlation function3 and
deviations from the canonical equilibrium state.1–4 To simulate SB
entanglement dynamics even under external driving forces, it is
necessary to consider both energy relaxation and excitation from

the bath, which is related by the fluctuation–dissipation theorem,5
such as for the reduced density operator based-approaches as the
hierarchical equations of motion (HEOM) approach,3–19 and the
quasi-adiabatic path integral (QUAPI) approach.20–26 Note that the
detailed balance and positivity conditions often assumed for the
reduced description of the density operator are sufficient conditions
resulting from an accurate description of the dynamics, but they are
not necessary conditions. In quantum thermodynamics, which deals
with the delicate energy balance between the subsystem and the bath,
arguments based solely on sufficient conditions may lead to artifacts,
such as breaking the second law of thermodynamics, by ignoring
bathentanglement.

Among these, the HEOM are stable as long as a sufficient
number of hierarchy elements are included and reliable, as their
numerical accuracy has been confirmed through comparisons with
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analytical solutions.9 This approach is suitable for thermodynamic
investigations because it allows for numerically rigorous dynamic
simulations and evaluates the SB interaction and bath parts of
the energy, which cannot be assessed using the conventional
reduced equation of motion approach, even for processes far from
equilibrium.27–34

It should be noted that there are two types of non-Markovian
effects: one originating from the noise correlation time determined
by the bath spectral distribution function (SDF) and the other from
the bath temperature determined by the Matsubara frequency. The
former is important for ultrafast vibrational, electronic, and exci-
tonic processes in the condensed phase, where the subsystem’s
characteristic time scale and the environment’s noise correlation
time are both in the femtosecond to picosecond range. However,
this is not essential in thermodynamic studies where the subsys-
tem changes on the nanosecond scale or less. In contrast, the
latter produces effects unique to quantum thermodynamics, such
as changing the equilibrium distribution from a canonical one due
to bathentanglement, even in the case of the Ohmic SDF without a
cutoff.14

Thus, the low-temperature quantum Fokker–Planck equations
(LT-QFPE)14 were derived from the Brownian (or Ullersma–
Caldeira–Leggett) model35–37 for the Ohmic SDF, include the low-
temperature Matsubara terms in the hierarchical form without
resorting to the rotating wave and factorized approximations. The
LT-QFPE are useful for thermodynamic exploration because they
reduce the numerical simulation cost compared to the regular
HEOM for the Drude SDF9–13 and makes it possible to take the clas-
sical limit to obtain the Kramers equation, which is equivalent to the
Langevin equation used for thermodynamic simulations in molec-
ular dynamics (MD) approaches. The source code of the LT-QFPE
for simulating single and multi-state Brownian systems is presented
as a supporting material in Ref. 14, along with a demo program
comparing LT-QFPE results for non-adiabatic dynamic simula-
tions with those of the fewest-switch surface hopping and Ehrenfest
methods with a classical Markovian Langevin force. The results
reveal the importance of the quantum low-temperature correction
terms.

To construct a systematic theory of thermodynamics, it is
essential to include a thermostatic process.33 By introducing mul-
tiple baths at different temperatures, we can study a thermostatic
process in which temperature varies with time. Assuming that the
time scale of quantum thermal fluctuations is shorter than the
time scale of the external perturbations, we can extend LT-QFPE
to the thermostatic case by introducing time-dependent Matsubara
frequencies, described as thermodynamic quantum Fokker–Planck
equations (T-QFPE).33,34 This article presents an overview of the
T-QFPE, provides the C++ source code for numerical simula-
tions, and briefly explains its theoretical background to further the
development of quantum thermodynamics.

In Sec. II, after explaining the thermodynamic SB Hamiltonian,
we present the T-QFPE in the Wigner representation. In Sec. III,
we verify the accuracy of the T-QFPE code by comparing it with
analytical solutions of the Brownian oscillator. In Sec. IV, we then
demonstrate the capability of our code by simulating the quasi-static
processes of the thermostatic Stirling engine, presenting the work
diagram in terms of intensive and extensive variables. Section V
presents concluding remarks.

II. THERMODYNAMIC QUANTUM FOKKER–PLANCK
EQUATIONS (T-QFPE)

The T-QFPE were developed for Ohmic SDF to investigate
various thermodynamic processes, including isothermal, thermo-
static, isentropic, thermostatic, and entropic processes.33,34 For these
processes, the free energy can also be evaluated as a function of
thermodynamic intensive and extensive variables by assessing the
work done for changes in temperature and external fields. The model
Hamiltonian of the T-QFPE is expressed as follows:

Ĥtot(t) = ĤA(t) +
N

∑
k=1

Ĥk
IB(t), (1)

where ĤA(t) is the subsystem Hamiltonian. Here, we consider the
case where the subsystem is described in phase space as

ĤA(t) =
p̂ 2

2m
+U(q̂, t), (2)

where q̂, p̂, m are the position operator, momentum operator, and
particle mass, respectively, and U(q̂, t) is the potential. To treat
thermostatic processes, in Eq. (1), we consider N heat baths with
different temperatures Tk. The kth bath Hamiltonian including the
system–bath (SB) interaction between the subsystem and the kth
bath Ĥk

IB(t) is expressed as

Ĥk
IB(t) =∑

j

⎧⎪⎪
⎨
⎪⎪⎩

(p̂ k
j)

2

2mk
j
+

mk
j(ωk

j)
2

2

⎡
⎢
⎢
⎢
⎣

x̂ k
j −

Akξk(t)ck
jq̂

mk
j(ωk

j)
2

⎤
⎥
⎥
⎥
⎦

2⎫⎪⎪
⎬
⎪⎪⎭

, (3)

where x̂k
j , p̂k

j , mk
j , ωk

j , and ck
j are the position operator, momentum

operator, mass, angular frequency, and coupling coefficient of the jth
mode in the kth bath, respectively, and Ak is the SB coupling strength
between the subsystem and the kth bath. Here, ξk(t) is the window
function that is 1 when the bath is attached to the subsystem and 0
when it is not.

For the kth bath, the subsystem A is driven by the
external force X̂ k

(t) through the interaction −V(q̂)X̂ k, where
X̂ k
(t) is the Heisenberg representation of X̂ k

≡ ∑ j ck
j x̂

k
j for

Ĥk
B. The character of the bath is determined by SDF of

the kth bath, defined as Jk(ω) = ∑ j (A
2
k(c

k
j)

2
/2mk

jωk
j)δ(ω − ωk

j).
Each bath being harmonic and Gaussian in nature, the char-
acter of X̂ k

(t) is specified by its two-time correlation func-
tions, such as the symmetrized and canonical correlation func-
tions defined by Ck

(t) ≡ ⟨X̂ k
(t)X̂ k

(0) + X̂ k
(0)X̂ k

(t)⟩B/2 and
Rk
(t) ≡ ∫

βk
0 dλ ⟨X̂ k

(−ih̵λ)X̂ k
(t)⟩

B
/2, where ⟨⋅ ⋅ ⋅⟩B represents the

thermal average of the kth bath degree of freedom.3,9

The SDF of the kth bath is defined as
Jk(ω) = ∑ j (A

2
k(c

k
j)

2
/2mk

jωk
j)δ(ω − ωk

j), and we assume that it
is the Ohmic SDF expressed as

Jk(ω) =
A2

k
π

h̵ω. (4)
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In the classical case, this SDF describes Markovian dynamics. The
correlation functions are then evaluated as14

Ck
(t) ≃

2A2
k

βk
(1 +

K

∑
l=1

2)δ(t) −
K

∑
l=1

2A2
kνk

l
βk

e−νk
l ∣t∣ (5)

and

Rk
(t) = A2

kδ(t). (6)

We consider the case in which the subsystem attaches to only
one bath at the same time; thus, the SB coupling strength and
temperature of the bath attached to the subsystem are expressed as

A(t) =
N

∑
k=1

Akξk(t) (7)

and

T(t) =
N

∑
k=1

Tkξk(t), (8)

respectively. The inverse temperature of the bath is defined as
β(t) = 1/kBT(t). The window function (thermostatic field) is
defined as

ξk(t) = θ(t − tk)θ(tk + Δt − t), (9)

where θ(t) is the step function and the time tk is defined as
tk = t0 + (k − 1)Δt, with initial time t0 and duration Δt.

For N heat baths, the HEOM consist of a (K ×N)-dimensional
hierarchy.27,28,32 We consider the situation where the difference
between the inverse temperatures of successive heat baths, for exam-
ple, k and k + 1, denoted as Δβ, and the time duration of each heat
bath Δt is expressed as hΔβ/Δt ≪ 1, β(t) [or T(t)] is considered
to change continuously. Under these conditions, the SB coherence
among different heat baths [e.g., the kth bath and the (k + 1)th
bath] arising from the bathentanglement between different heat
baths becomes negligible, while it is still taken into account in the
equilibrium and non-equilibrium distributions of the subsystem.38

This allows us to extend the low-temperature quantum
Fokker–Planck equations (LT-QFPE)14 for the set of Wigner distri-
bution functions (WDFs), Wn⃗(p, q; t), where n⃗ = (n1, . . . , nK) is the
nonnegative integer vector that serves as the index of the hierarchy
members by introducing time-dependent Matsubara frequencies
ν(t) = 1/hβ(t).

Thus, the T-QFPE can be expressed as follows:33,34

∂Wn⃗(p, q; t)
∂t

= − ( L̂qm(t) +
K

∑
l=1

nlνl(t) + Ξ̂K(p, q; t))Wn⃗(p, q; t)

−
K

∑
l=1

Φ̂p(t)Wn⃗+e⃗l(p, q; t)

−
K

∑
l=1

nlνl(t)Θ̂l(p, q; t)Wn⃗−e⃗l(p, q; t), (10)

where e⃗l is the unit vector whose lth element is 1, otherwise
0. The frequency νl(t) is the lth characteristic frequency of the

non-Markovian effect arising from the Matsubara frequency, and K
is the number of frequencies.6–8 Although the physical meaning is
no longer clear, an efficient and simple approach to suppressing K
is to use the Padé decomposition represented by νl(t) = ζ lkBT(t)/h,
where ζ l is the lth Padé factor for frequency.39–41

In general, the quantum correlations described by the Mat-
subara frequencies decay quickly and the above equations describe
the thermostatic process accurately. However, for a Brownian sys-
tem, when the correlation time exceeds the time scale of the
bath temperature change, the SDF-based description of a thermal
bath breaks down. This situation arises when A(t) changes faster
than the noise correlation time, breaking the translational sym-
metry of the reduced equations of motion regarding the position
(see Appendix A). In such cases, results must be verified by compar-
ing them with those explicitly including multiple heat baths using
the (K ×N)-dimensional hierarchy,38 as has been done for heat
transfer processes27,28 and for the adiabatic processes of quantum
Carnot cycles.32

The operator L̂qm(t) is the quantum Liouvillian of the
subsystem expressed using the Fourier form of the potential
expressed as9–13,42–46

− L̂qm(t)W(p, q) ≡ −
p
m

∂W(p, q)
∂q

−
1
h̵∫

∞

−∞
dp′

2πh̵
UW(p − p′, q; t)W(p′, q), (11)

where

UW(p, q; t) = 2∫
∞

0
dx sin(

px
h̵
)[U(q +

x
2

; t) −U(q −
x
2

; t)].

(12)

While the above representation of Liouvillian is numerically
stable even in cases where the potential is singular (the source code
for the above scheme is given in the supporting material of Ref. 9),
when the potential is in a simple analytical form, we employ the
Moyal expansion,14,46,47

− L̂qm(t)W(p, q) ≡ −
p
m

∂W(p, q)
∂q

+
∞
∑
n=0

1
(2n + 1)!

∂2n+1U(q; t)
∂q2n+1

× (−
h̵2

4
∂2

∂p2 )

n
∂W(p, q)

∂p
. (13)

The other operators in Eq. (10) are defined as follows:33,34

Φ̂p(t) ≡ −
A(t)
β(t)

∂

∂p
, (14)

Θ̂0(p, q; t) =
A(t)β(t)

m
(p +

m
β(t)

∂

∂p
), (15)

Θ̂l(p, q; t) ≡ 2A(t)ηl
∂

∂p
, (16)

for 1 ≤ l ≤ K, and
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Ξ̂K(p, q; t) ≡ Φ̂p(t)
K

∑
l=0

Θ̂l(p, q; t), (17)

where ηl is the lth Padé coefficient. Note that while various numer-
ical techniques have been developed to fit the bath correlation
function [Eq. (5)],48,49 here we chose the Padé spectral decompo-
sition because ζ l and ηl are independent of the change in bath
temperature over time under the thermostatic process. The factors
ζ l and ηl are listed in Ref. 14. In the numerical simulation, we trun-
cate Wn⃗(p, q; t) satisfying the condition∑K

j=1 n j ≤ N, where N is the
truncation integer.4,7–9

The classical limit of T-QFPE is the Kramers equation
expressed as10–13,47,50

∂W(p, q; t)
∂t

= − L̂cl(t)W(p, q; t) +
A2

m
∂

∂p
(p +

m
β(t)

∂

∂p
)W(p, q; t),

(18)

where W(p, q) is the phase space distribution function and the
classical Liouvillian is defined as

− L̂cl(t)W(p, q) ≡ −
p
m

∂W(p, q)
∂q

+
∂U(q; t)

∂q
∂W(p, q)

∂p
.

(19)

The description of the Kramers equation is equivalent to that of the
Langevin equation.3,10

Note that the Wigner representation is also convenient
for implementing various boundary conditions, most notably per-
iodic,11,12,45 open,51 and inflow–outflow boundary conditions.42–44

As presented in Refs. 33 and 34, thermodynamic intensive
and extensive variables, which are interrelated by time-dependent
Legendre transformations, and various thermodynamic potentials
can be evaluated from the T-QFPE. For the potential expressed as
U(q; t) = U0(q) − x(t)q, where U0(q) is the time-independent part
of the potential, the enthalpy of the subsystem HA(t) is expressed as

HA(t) = UA(t) − x(t)XA(t), (20)

where

UA(t) = trA{[
p2

2m
+U0(q)]W(p, q; t)} (21)

is the internal energy and

XA(t) = trA{qW(p, q; t)}. (22)

Here, W(p, q; t) is the zeroth number of the solution of Eq. (10)
expressed as W0⃗(p, q, t) in the quantum case and the solution of the
thermodynamic Kramers Eq. (18) in the classical case.

Details of numerical simulations with T-QFPE are presented in
Appendix B.

III. NUMERICAL EXAMINATION FOR ISOTHERMAL
BROWNIAN OSCILLATOR SYSTEM

Proceeding with a simulation without verifying computational
precision is akin to ascending a cliff without the assurance of a
rope. Thus, although limited to the case where the subsystem is har-
monic, numerically “exact” tests (non-Markovian tests) for reduced

dynamics of a subsystem under non-perturbative and non-
Markovian SB interactions have been developed based on exact ana-
lytical solutions of the Brownian oscillator.9 Here, non-Markovian
effects refer to the effects of time correlations in the noise generated
by the heat bath. There are two types of non-Markovianity: one that
exists in both the classical and quantum cases, described as the cut-
off frequency of SDF, and the other that exists only in the quantum
case, described by the Matsubara frequency. Since quantum thermo-
dynamic processes are slower than the bath-noise correlation time,
we focus here on the latter non-Markovian effects, which arise even
from the Ohmic SDF without a cutoff.

The harmonic potential of the subsystem is described as1,2

U(q̂) =
1
2

mω2
0q̂ 2, (23)

where m and ω0 are the mass and frequency of the subsystem,
respectively. In the energy eigenstate representation, the above
system is described as ĤA = h̵ω0(â+â− + 1/2), where â± are the
creation–annihilation operators of the eigenstates.

Non-Markovian tests (Ref. 9) are based on the solutions for (i)
the steady-state distribution to examine the accuracy of the ther-
modynamic description, (ii) the symmetric autocorrelation function
C(t) ≡ ⟨q̂(t)q̂ + q̂q̂(t)⟩/2 to examine the description of temperature
effects, (iii) the linear response function R(1)(t) ≡ i⟨[q̂(t), q̂]⟩/h̵ to
examine the description of non-perturbative SB coupling effects, and
(iv) the nonlinear response function R(2)TTR(t2, t1) = −⟨[[q̂ 2

(t1 + t2),
q̂(t1)], q̂]⟩/h̵2 to test the dynamical correlation between the system
and the bath. Here, the equilibrium expectation value is defined as
⟨⋅ ⋅ ⋅⟩ = tr{⋅ ⋅ ⋅ exp (−βĤtot)/Ztot}, where Ztot is the partition func-
tion for the total Hamiltonian Ĥtot . Since the effect of (iv) is not
important in the Ohmic case, we perform only tests (i)–(iii).

For all our computations, we fixed the oscillator frequency
as ω0 = 1.0. The temperature was set to (a) T = 1.0 (high) and
(b) T = 0.1 (low). For the T-QFPE, we set the truncation number
of the hierarchy to N = 7 in tests (i) and (ii), and we set N = 6, 7,
and 8 for the weak (A = 0.5), intermediate (A = 1.0), and strong
(A = 1.5) SB coupling cases in test (iii), respectively. We set the
number of Padé frequencies in the T-QFPE to K = 2 and 4 at high
(T = 1.0) and low (T = 0.1) temperatures, respectively. The mesh
size of the WDF was set to nq = 64 and np = 64. For the T-QFPE,
we chose the mesh steps of dq = 0.3 and dp = 0.5, and dq = 0.3 and
dp = 0.3 for high (T = 1.0) and low (T = 0.1) temperatures, respec-
tively. For the Kramers equation, we chose the mesh steps dq = 0.15
and dp = 0.2, and dq = 0.3 and dp = 0.4 for high (T = 1.0) and low
(T = 0.1) temperatures, respectively.

To illustrate the applicability of the Markovian assumption (or
stochastic thermodynamics), we also present the results obtained
from the quantum master equation (QME) in the Lindblad form.52

Under the factorized initial condition and rotating wave approx-
imation (RWA) that are employed to preserve positivity under
non-realistic Markovian assumption,3,4 the QME can be expressed
as follows:

∂

∂t
ρ̂A(t) = −

i
h̵
[ĤA(t), ρ̂A(t)] +

A2

2m
n̄(2â+ρ̂A(t)â− − {â−â+, ρ̂A(t)})

+
A2

2m
(n̄ + 1)(2â−ρ̂A(t)â+ − {â+â−, ρ̂A(t)}), (24)
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FIG. 1. Non-Markovian tests for the description of (i) the thermal equilibrium state
feq
(q) at (a) high temperature (T = 1.0) and (b) low temperature (T = 0.1) cal-

culated for an Ohmic Brownian oscillator system. In each figure, the calculated
results from the T-QFPE (red curve), Kramers equation (green curve), quantum
master equation (blue curve), and analytical solution (black dashed curve) are
depicted, respectively. The SB coupling strength is A = 1.0, and the frequency of
the oscillator is ω0 = 1.0.

where n̄ = 1/(eβh̵ω0 − 1) and we ignored the non-resonant terms,
such as (â+)2ρ̂A(t) and â+ρ̂A(t)â+.3 To perform numerical calcu-
lations, we employed 16 eigenstates.

We first examined the descriptions of the thermal equilibrium
state as the function of coordinate as14

f eq
(q) ≡ ∫ dp Weq

(p, q). (25)

In the high-temperature case shown in Fig. 1(a), all calculated results
show similar profiles because the thermodynamic characteristic of
the subsystem is determined by βhω0 and the high-temperature limit
β→ 0 is equivalent to the classical limit h→ 0. However, in the low-
temperature case shown in Fig. 1(b), the quantum results are more
diffuse than the classical result due to zero-point oscillations. The
width of the QME result in Fig. 1(b) is wider than the exact and
T-QFPE results due to the lack of bathentanglement.

In Fig. 2, we tested the effects of fluctuations at different tem-
peratures. While the equilibrium distributions were similar, the
dynamical behaviors of the T-QFPE and Kramers results were very
different from the QME result, especially in the low-frequency
regime. This is because RWA ignores the double excitation and de-
excitation described by the operators â+â+ and â−â−,3 which play

FIG. 2. Non-Markovian test for (ii) the autocorrelation function C[ω] to examine
the effects of temperature effects. In each figure, the results calculated from the
T-QFPE (red curve), Kramers equation (green curve), quantum master equation
(blue curve), and analytical solution (black dashed curve) are plotted as a function
of ω. The SB coupling strength was A = 1.0, and the bath temperatures were
(a) T = 1.0 (high) and (b) T = 0.1 (low).

an important role in high-temperature regimes where the thermal
excitation energy is large. At low temperatures, the effect of dou-
ble excitation and de-excitation is suppressed, and the QME and
T-QFPE results become closer, while the classical Kramers results
become very different due to the lack of zero-point oscillation. The
difference between the QME and the T-QFPE results is due to
bathentanglement, which becomes apparent at low temperatures.

In Fig. 3, we tested the effects of dissipation at different SB cou-
pling strengths. As the analytical solution of the harmonic Brownian
system indicated,1,9 the linear response function does not exhibit any
quantum effects and the analytical, T-QFPE, and Kramers results
always overlap, while the results obtained from the QME differ from

FIG. 3. Non-Markovian test on (iii) the linear response function Im[R(1)
(ω)] to

investigate the description of non-perturbative SB coupling effects. In each figure,
the results computed from the T-QFPE (red curve), the Kramers equation (green
curve), the quantum master equation (blue curve), and the analytical solution
(black dashed curve) are plotted as a function of ω in the high temperature case
T = 1.0. The SB coupling strengths are (a) A = 0.5 (weak), (b) A = 1.0 (intermedi-
ate), and (c) A = 1.5 (strong). In the weak coupling case, all results overlapped and
were indistinguishable. In the case of intermediate and strong coupling strengths,
the QME results deviated from the exact results, while the T-QFPE and Kramers
results always overlapped with the exact results in this harmonic Brownian case
where quantum effects do not play a role.
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the others, especially for larger A, because the QME is a perturbative
approach.

These results indicate that the equations of motion derived
using the Markovian or rotating wave (or secular) approximation,
such as the Lindblad equation and QME, can only be applied to
high-temperature regions where the subsystem exhibits semiclassi-
cal dynamics.3,4,8,9 Thus, the validity of the fluctuation theorem53–55

and stochastic thermodynamics56–61 based on a factorized initial
condition and/or Markovian assumption, especially in the quan-
tum case, should be carefully examined. In addition, as can be seen
from the form of Eq. (10), it is the fluctuation and dissipation
terms that drive the subsystem to the thermal equilibrium state,9
and the detail balance condition is not necessary.34 In fact, the
time evolution of the reduced system described by the theory based
on the detail balance condition is different from that described by
the SB model. Moreover, the HEOM approach, which satisfies the
fluctuation–dissipation theorem, can correctly describe the effects
of bathentanglement, while theories based on the detailed balance
condition ignore them completely.

Before performing a T-QFPE simulation, these tests should be
used to select the working parameters, such as mesh size, time step,
and hierarchy depth. Since these tests are limited to the case of har-
monic potential, a finer choice of mesh and time step is necessary
when anharmonicity is large.

IV. DEMONSTRATION WITH THERMOSTATIC
STIRLING ENGINE

In conventional studies, the quantum Stirling engine employs
two isothermal (hot and cold) processes.62–65 Here, however, we
consider two thermostatic processes, as in the original Stirling
engine where the bath temperature changes continuously.34 Thus,
the thermostatic Stirling engine consists of four steps: (i) a hot
isothermal process, (ii) a thermostatic transition from hot to cold,
(iii) a cold isothermal process, and (iv) a thermostatic transition
from cold to hot, as described by the external field E(t) and the
inverse temperature β(t) in Table I. The amplitudes are set as
E1 = 0.5 and E2 = 0.2, with the inverse temperatures of the hot and
cold baths being βH = 1.0 and βC = 1.5. For a subsystem, we consider
an anharmonic system, the same as described in Refs. 33 and 34. The
potential U(q̂, t) is expressed as

U(q̂, t) = U2q̂ 2
+U3q̂ 3

+U4q̂ 4
− E(t)q̂, (26)

TABLE I. Time evolutions of the external force [E(t)] and temperature [T(t)] in
a four-step thermostatic Stirling engine with equal time intervals τ. The cycle con-
sists of (i) a hot isothermal process, (ii) a thermostatic transition from hot to cold,
(iii) a cold isothermal process, and (iv) a thermostatic transition from cold to hot. We
set ΔE = E2 − E1 and Δβ = βC − βH .

E(t) β(t)

(i) Hot isothermal E1 + ΔEt/τ βH
(ii) Hot to cold E2 βH + Δβ(t/τ − 1)
(iii) Cold isothermal E2 − ΔE(t/τ − 2) βC
(iv) Cold to hot E1 βC − Δβ(t/τ − 3)

FIG. 4. Schematic illustration of a Stirling engine.

where U2, U3, and U4 are constants and E(t) is the time-dependent
external force. A schematic of the model is presented in Fig. 4. The
potential constants are U2 = 0.1, U3 = 0.02, and U4 = 0.05. We con-
sider (a) weak (A = 0.5), (b) intermediate (A = 1.0), and (c) strong
(A = 1.5) SB coupling cases. Additional parameters for the isother-
mal and thermostatic processes are listed in Table II. The poten-
tial surface with the eigenstates and eigenenergies is presented in
Ref. 33. In an isothermal process, the first excitation energy is ∼0.8,
making the bath temperature low at T = 1/(kBβ) ≈ 0.3 and high
at T = 1/(kBβ) ≈ 5.0. We present results in the quasi-static case
with each step having a time duration of τ = 1.0 × 104, while the
non-equilibrium case was discussed in Ref. 34.

In our previous papers,33,34 we introduced the quasi-static
Massieu potential and dimensionless Clausius entropy defined as

dΦqst
A (t)
dt

= −Uqst
A (t)

dβqst
(t)

dt
− Ẽ qst

(t)
dPqst

A (t)
dt

(27)

and

dΛqst
A (t)
dt

= βqst
(t)

dUqst
A (t)
dt

− Ẽ qst
(t)

dPqst
A (t)
dt

, (28)

respectively, where Ẽ(t) = β(t)E(t) and the superscript qst indicates
that the process is quasi-static. The dimensionless Clausius entropy
is related to the quasi-static entropy by Sqst

A (t) = kBΛqst
A (t), allowing

us to evaluate the quasi-static entropy using Eq. (28).

TABLE II. Parameter values used for the simulations of the Stirling engine. Here, dx
and dp are the mesh sizes for position and momentum, respectively, in the Wigner
space. The integers N and K are the cutoff numbers used in the T-QFPE.

A N K dx Dp

Classical
0.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.25 0.25
1.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.25 0.25
1.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.25 0.25

Quantum
0.5 6 2 0.3 0.5
1.0 7 2 0.3 0.5
1.5 8 2 0.3 0.5
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To monitor the performance of the thermostatic Stirling
engine, we introduced intensive work and heat33,34 as follows:

dW int
A (t)
dt

= trA{
∂ĤA(t)

∂t
ρ̂A(t)} (29)

and

dQA(t)
dt

= trA{ĤA(t)
∂ρ̂A(t)
∂t

}. (30)

We provide the demonstration program to evaluate these
variables from Eqs. (20) and (21) in the supplementary material.

To elucidate the characteristics of a cyclic process, we con-
structed thermodynamic work diagrams for external forces, tem-
perature, and their conjugate variables as the Eqst–Pqst

A and T qst–Sqst
A

diagrams, analogous to the P–V diagram for a gas system. The
work diagrams in the non-equilibrium state are given in Ref. 34.
Figures 5 and 6 show the Eqst–Pqst

A and T qst–Sqst
A diagrams for weak

and strong SB coupling strengths in the classical (left column) and
quantum (right column) cases. The trajectories of the work diagrams
are periodic and closed because Pqst

A and Sqst
A are state variables.

The processes in the Eqst–Pqst
A diagrams evolve counterclock-

wise, while those in the T qst–Sqst
A diagrams evolve clockwise. Com-

pared to the P–V diagram for an ideal gas, the rotation directions

FIG. 5. E qst
(t)–Pqst

A (t) diagrams for the thermostatic Stirling engine in the classi-
cal case (left column) and quantum case (right column) for (a) A = 0.5 (weak), (b)
1.0 (intermediate), and (c) 1.5 (strong) SB coupling strengths. In each plot, the four
curves (or lines) represent (i) hot isothermal (red), (ii) from hot to cold thermostatic
(green), (iii) cold isothermal (blue), and (iv) from cold to hot thermostatic (orange)
processes, respectively.

FIG. 6. T qst
(t)–Sqst

A (t) diagrams for the thermostatic Stirling engine in the classi-
cal case (left column) and quantum case (right column) for (a) A = 0.5 (weak), (b)
1.0 (intermediate), and (c) 1.5 (strong) SB coupling strengths, respectively. Each
cycle starts with the red arrow, and the four curves represent (i) hot isothermal
(red), (ii) from hot to cold thermostatic (green), (iii) cold isothermal (blue), and (iv)
from cold to hot thermostatic (orange) processes, respectively.

in the Eqst–Pqst
A diagrams are opposite because the signs of PdV and

EqstdPqst
A are opposite in the differential forms of the internal energy

in ideal gas and dipole systems. The area enclosed by each diagram
corresponds to the positive work performed by the external field in
clockwise evolution. We summarize the intensive work [Eq. (29)]
performed in one cycle for various SB couplings in the classical and
quantum cases in Table III. For the T qst–Sqst

A diagrams in Fig. 6,
the area enclosed by the clockwise curve corresponds to the heat,
QA per cycle. The entropy changes monotonically in the thermo-
static processes due to the concavity of the quasi-static Gibbs energy
for T.33

In the classical case, the equilibrium distribution is independent
of the SB coupling strength, as indicated by the Kramers equation.
Therefore, the diagram is the same for the coupling strength. In

TABLE III. The intensive work performed in one cycle is shown for weak (A = 0.5),
intermediate (A = 1.0), and strong (A = 1.5) SB coupling strengths in both the
classical and quantum cases.

A Classical Quantum

0.5 −2.264 × 10−2
−1.657 × 10−2

1.0 −2.262 × 10−2
−1.809 × 10−2

1.5 −2.258 × 10−2
−1.913 × 10−2
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the quantum case, due to bathentanglement, the trajectories change
depending on SB coupling strength,31,32 but the difference is not sig-
nificant because the temperature is not low, making the results closer
to the classical case (see also Table II).

Compared to the non-equilibrium case,34 the trajectories in
the quasi-static case are stable and do not fluctuate, even when the
interaction is weak.

In the quantum case, the work performed by the external field
decreases with larger SB coupling strengths due to bathentangle-
ment, while in the classical case, it does not. Our previous study
based on the spin-Boson model for the Carnot cycle32 showed that
the intensive work performed in one cycle was independent of the
SB coupling strength because the initial and final equilibrium states
in isothermal processes were the same regardless of the SB coupling
strength. Thus, from the Kelvin–Planck statement, the intensive
work performed in the isothermal processes was independent of
the SB coupling strength. However, in the present case, because
the initial and final equilibrium states in isothermal processes differ
depending on the SB coupling strength due to bathentanglement, as
shown in Appendix C, the intensive work changes depending on the
coupling strength.

Finally, in the classical and high-temperature limits, the
T-QFPE results are equivalent to those obtained from the Langevin
approach, where a Markovian description is applicable. However,
at low temperatures, due to the bathentanglement, the subsystem
follows non-factorial and non-Markovian dynamics, and its equilib-
rium state deviates from the Boltzmann distribution. This indicates
that dynamics in a fully quantum regime cannot be described by
the fluctuation theorem53–55 and stochastic thermodynamics.56–61

In other words, the difference between the classical and quantum
results represents a breakdown of these theory in the fully quantum
regime.

V. CONCLUSION
This study presents a flexible and reliable simulation tool

(T-QFPE) designed to enable non-experts in open quantum dynam-
ics theory to quantitatively develop non-equilibrium thermody-
namic theories. To ensure numerical reliability and facilitate the
determination of working variables, such as mesh size and time
step, we included a non-Markovian test routine that compares the
numerical results with analytical solutions for a harmonic Brownian
system.

The central principle of thermodynamics is that thermal phe-
nomena are described as intensive and extensive variables. Con-
sequently, we introduce extensive variables conjugate to intensive
variables as time-dependent physical observables.33,34 A routine for
calculating the Helmholtz energy in the quasi-static case is included.
As a demonstration, a thermostatic Stirling engine for an anhar-
monic Brownian system is simulated and analyzed in both quantum
and classical cases. Through work diagrams, it was shown that
due to bathentanglement, the work done on the system by the
external field is smaller in the quantum case than in the classical
case.

Since the thermodynamic Kramers equation used in this study
is equivalent to the Langevin equation for thermostatic processes, it
is also possible to explore more complex systems using molecular
dynamics simulations in classical cases.

Although our current discussion focuses on an anharmonic
Brownian system, the code can be extended to study chemical
reaction systems,10,11,66,67 ratchet systems,12 resonant tunneling
systems,42–44 non-adiabatic transition systems,14,45,68 and vibrational
modes of liquid water,69–72 which have been previously studied with
the quantum hierarchical Fokker–Planck approach. This extension,
for example, would allow for the investigation of the spatiotemporal
distribution of entropy production in ratcheting systems.

When focusing solely on quantum properties, simpler systems
such as spin–boson systems, are less computationally demanding
and easier to analyze. A computer code for the thermodynamic
spin–boson system will be presented in a forthcoming paper.38

SUPPLEMENTARY MATERIAL

Numerical integration codes for the T-QFPE and four demo
codes (three for non-Markovian tests and one for the thermostatic
Stirling engine) are provided in the supplementary material. The
manual can be found in the ReadMe.pdf file.
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APPENDIX A: THE ADIABATIC TRANSITION AND THE
TRANSLATIONAL SYMMETRY

When considering the adiabatic transition process, where the
SB coupling strength A(t) depends on time, an additional term
appears, which is expressed as

A(t)
dA(t)

dt
q
∂

∂p
Wn⃗(p, q; t), (A1)

on the right-hand side of Eq. (10). This term violates the transla-
tional symmetry of the reduced system because Eq. (A1) is propor-
tional to the position q, and dA(t)/dt is not negligible unless A(t)
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changes very slowly. This is due to the ambiguity in defining the
noise correlation time of a heat bath when A(t) is time-dependent.
However, in our current study, A(t) is constant, so this term
vanishes.

APPENDIX B: NUMERICAL IMPLEMENTATION
OF THE T-QFPE

As with the LT-QFPE,14 the T-QFPE are simultaneous differ-
ential equations expressed in terms of the reduced density matrix
elements or WDF. Due to the complex hierarchical structure, espe-
cially at low temperatures, the numerical integration of the T-QFPE
is computationally intensive in both memory and central pro-
cessing unit (CPU) efficiency. Efforts have been made to reduce
computational costs by improving the algorithmic and numerical
techniques.4 For example, continuous efforts have been made to
construct efficient hierarchy elements.48,49,73–75 Here, we use the
Padé spectral decompositions39–41 instead of the Matsubara fre-
quency decomposition.6–9 In our source code, we employed the Padé
factors listed in Ref. 14.

Although not used here, if we wish to handle larger systems,
such as a system with a conical intersection,76 a numerical algo-
rithm based on the optimization of hierarchical basis sets77 and a
tensor network algorithm to reduce the number of calculations can
be employed.78,79

1. Integration routine
We integrate Eq. (10) using the predictor–corrector approach

in conjunction with the Adams–Bashforth and Adams–Moulton
methods.80 In this approach, we first compute an initial guess of the
auxiliary WDFs at the next time step t + δt, as the “predictor” using
the fourth-order Adams–Bashforth method expressed as follows:

Wpred
n⃗ (t + δt) =Wn⃗(t) +

δt
24
[55Kn⃗(t) − 59Kn⃗(t − δt)

+ 37Kn⃗(t − 2δt) − 9Kn⃗(t − 3δt)], (B1)

where Kn⃗(t) = L̂n⃗(t)Wn⃗(p, q; t) describes the time evolution of each
Wn⃗(p, q; t) using the Liouvillian for the n⃗ element expressed as
L̂n⃗(t). Then, to refine the initial guess, we compute Wn⃗(p, q; t + δt),
as the “corrector” using the fourth-order Adams–Moulton method
expressed as

Wn⃗(p, q; t + δt) =Wn⃗(p, q; t) +
δt
24
[9Kpred

n⃗ (t + δt)

+ 19Kn⃗(t) − 5Kn⃗(t − δt) + Kn⃗(t − 2δt)], (B2)

where Kpred
n⃗ (t) = L̂n⃗(t)W

pred
n⃗ (p, q; t). In the predictor–corrector

method, the corrector Wn⃗(p, q; t + δt) is regarded as the auxiliary
WDF at time t + δt.

To adapt the predictor–corrector approach, the initial values
Wn⃗(t − δt), Wn⃗(t − 2δt), and Wn⃗(t − 3δt) must be prepared. Thus,
we use the fourth-order Runge–Kutta method for the first three steps
from t − 3δt to evaluate the initial values.

The Kramers equation (18) with Eq. (19) is also integrated
accordingly.

2. Open Multi-Processing (OMP) and Compute Unified
Device Architecture (CUDA)

Because the T-QFPE [Eq. (10)] and the Kramers equation
[Eq. (18)] are linear differential equations, parallelizing the routines
enhances computational performance. Here, we use two paralleliza-
tion technologies: Open Multi-Processing (OMP), which parallelizes
the CPU cores,81–83 and Compute Unified Device Architecture
(CUDA), which performs parallelization for the Graphic Processing
Unit (GPU).14,84–86

In the supplementary material, we provide two types of
T-QFPE programs: one using only OMP and one using both OMP
and CUDA technologies. To use CUDA, remove the comment sym-
bol “//” from the third line “//#define UseCUDA” in the “MAIN.h”
file.

APPENDIX C: PARTITION FUNCTION
OF ANHARMONIC POTENTIAL

We consider an anharmonic subsystem expressed as

U(q) =
1
2

mω2
0q2
− Eq +U′(q), (C1)

where U′(q) is the anharmonic part of the potential. The parti-
tion function of any anharmonic Brownian oscillator system can
be evaluated using the imaginary HEOM approaches.9 Alternatively,
when the anharmonicity is weak, the partition function can also be
evaluated using the generating functional approach as9,87,88

Zeq
anh = [1 −

1
h̵∫

βh̵

0
dτ′U′(h̵

∂

∂ J̄(τ′)
)

+
1

2h̵2∫

βh̵

0
∫

βh̵

0
dτ′′dτ′U′(h̵

∂

∂ J̄(τ′)
)U′(h̵

∂

∂ J̄(τ′′)
)

+ ⋅ ⋅ ⋅ ]Z0[J̄; βh̵]∣
J̄(τ)=E

, (C2)

where Z0[J̄; βh̵] is the generating functional of the subsystem defined
by the potential

U(q, τ) =
1
2

mω2
0q2
− J̄(τ)q. (C3)

Because U(q, τ) is harmonic, we can obtain the generating func-
tional expressed as87

Z0[J̄; βh̵] =
1

βh̵ω0

∞
∏
n=1

ν2
n

ω2
0 + νn + ζn

× exp [
1

2h̵M∫
βh̵

0
dτ∫

βh̵

0
dσ J̄(τ)J̄(σ)Λ(τ − σ)],

(C4)

where

Λ(τ) =
1

βh̵

∞
∑

n=−∞

eiνnτ

ω2
0 + ν2

n + ζn
(C5)

and
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ζn =
1
m∫

∞

0

J(ω)
h̵ω

2ν2
n

ω2
+ ν2

n
dω. (C6)

As indicated in the above expression, the value of the partition func-
tion in the quantum case changes as a function of the SB coupling
strength through J(ω), even in the harmonic case, while in the
classical case, it remains unchanged.

To apply the above expression, both the anharmonicity and the
external field are assumed to be weak. The anharmonic part of the
potential is given by

U′(q) = U3q3
+U4q4. (C7)

From Eqs. (C2)–(C6), we can evaluate the intensive work done in
one cycle of the Stirling engine. The difference between classical and
quantum values in the Ohmic case is evaluated as

W int
QM −W int

CL =
3h̵U3

m
(βHΛβH(0) − βCΛβC(0))(ϵ2 − ϵ1)

+
6h̵U4

m
(βHΛβH(0) − βCΛβC(0))(ϵ

2
2 − ϵ2

1), (C8)

where ΛβH(0) and ΛβC(0) are Λ(0) at βH and βC and
ϵα = Eα/mω2

0 (α = 1, 2). For U3, U4 > 0, the right-hand side of
Eq. (C8) is positive for E1 > E2 because βHΛβH(0) − βCΛβC(0)
becomes negative. This implies that W int

QM >W int
CL . Since Λ becomes

small with increasing SB coupling strength A, the quantum result
approaches the classical result as A→∞.

Although our numerical results presented in Sec. III are not in
the perturbative regime, the results in Table III can be qualitatively
explained by this argument.
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