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Two-time correlation functions of physical operators of a system interacting with a
heat bath producing a Gaussian-Markoffian noise are treated with the use of
Feynman-Vernon’s influence functional formalism. The Laplace transforms of cor-
relation functions are shown to be expressed in terms of continued fractions of rele-
vant hyperoperators. The result is valid to all orders of the system-bath interaction.
In the limitation of motional narrowing, it reduces to those obtained in conventional

methods.

§1. Introduction

In a previous paper,"” we considered a test
system coupled to a bath system with linear in-
teractions and derived a set of hierarchical
equations for the evolution of its reduced den-
sity operator. The basic assumption is that the
interaction acts on the test system as a noise
which is essentially Gaussian and Markoffian.
The Gaussian property is guaranteed for a
bath consisting of harmonic oscillators and is
also realized in more general classes of bath
systems as long as the interaction consists of a
large number of weak interactions. The
Markoffian property assumes exponential
relaxation of response of the bath when it acts
with the test system. This assumption is not
universal but is a reasonably good model for
realistic systems. With the use of Feynman-
Vernon’s influence functional method, we
have shown that the system-bath interaction
is represented by a quantum Gaussian-
Markoffian noise if the bath temperature is
high enough so that the condition

hy/ksT<«< 1 (1.1)

is satisfied, where y is the relaxation rate of the
bath.

In the present paper we extend the previous
treatment to correlation functions of physical
operators of the test system and show that
their Laplace transforms can be expressed in
terms of continued fractions of relevant

hyperoperators. The results are valid to all
orders of the system-bath interaction. In the
lowest order, they reduce to the conventional
results of the master equation approach which
are commonly used in treating relaxation and
fluctuation in dissipative systems. Our results
are expected to be applicable to such problems
in which the higher order effects of interac-
tions become important. Some applications
will be treated in forthcoming papers on the
second and higher order optical processes.

In the next section we review the two-time
correlation function. In §3 we evaluate the ex-
pression of §2 along the same line as the
previous paper. In §4, the results are com-
pared with those obtained with use of the pro-
jection operator method. It is shown that our
results contain important features of nonper-
turbative interaction which have not been seen
in conventional treatments. Section 5 is
devoted to concluding remarks.

§2. Two-Time Correlations

Let X and Y be physical operators of the
test system A which is coupled to the bath
system B. The Hamiltonian of the total
system, A +B, is denoted by H(¢), which may
depend on time ¢. We define the two-time cor-
relation function of X and Y by

Crx(t, to)) =Y (to+ 1) X (to)>

=tr {pa(0) Y(t0+ 1) X (£0)}, (2.1)
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where Y(7) and X(¢) are the Heisenberg
operators, po(¢) is the density operator of the

total system at time ¢ and tr {
summation over the A+ B states. The above
expression is written as

(Vol. 58,

} means the

Y

VST (41,
Cyx(t, to)=tr {plm(o) exp- [%5 H(t)dt] Y exp- [—%s H(t)dt}
0 0

i

X exp- [ 7 SOH(t)dt]Xexph [—%SUHU)(“”,
0 0

] means an exponential operator ordered in time as indicated by the ar-

where exp-[ ]orexp-|

(2.2)

row. Repeated use of the cyclic invariance of the trace operation leads to?

{+ 1o
Cyx(t, to)=tr {Yexpk [—%S H>(t)dt

0

HXCXI% [—%S:Hx(f) dt} pm[(O)}}, (2.3)

where the commutator operation F* is introduced by the definition

F*G=FG-GF,

which gives

exp- [—-iSTFX(t) dtl G=exp- [—igr F(t) dt] G exp- [iSTF(t) dt},
0 0

for any two operators F and G.

The correlation functions provide us with
important information on the system we
observe. For example, the equilibrium power
spectrum of X is evaluated as

Ixx(C()):—tlim S dt C_iwtCX)((t, to)

0%

=2 Re( liﬁé 50Cxx[s, s0lls=iw ). (2.6)

Here, the double Laplace transform is defined
by

ny[S, So]:S dtS dto C_Ste_s"’OCy)((f, to),
0 0

Q2.7

and, for the time-independent Hamiltonian

/!)A(t')'-”-ﬂl\f"1 def d¢fSSN_l doi* doflompa(ef, of; t')<ef |,

with

2.4)
(2.5)
0
H, this is simply expressed as
1
C ,So]=tr Y —————
vx[$, So]=tr { s—G(h)H*
1
X X———__ tot 9
( so— Gy H*" (O))}
(2.8)

where the fractional operators indicate the cor-
responding inverse operators.

§3. Hierarchical Equations for Correlation
Functions

As was shown in the previous paper, the
coherent state representation of the density
operator of a system A in the absence of its in-
teraction with the bath is written as

3.1)

pa(oF, of; t')=T (SDf[¢*(T)¢(T)] Swa’*(T)qb’(r)] exp [(i/h)Sa(d*, &5 t', 0)]

xexp [—(i/h)Sk(9'*, ¢'; ¢/, O)]),

3.2)

where ¢(t), *(2), etc., are complex numbers for a Boson system and are Grassmann numbers
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for a Fermion system in which case the symbol T indicates their proper ordering in time. The
expression in eq. (3.1) is a path integral in which all possible paths start from an initial state
#(0)=¢; and ¢'*(0)=¢/* and end at ¢’ at the states ¢*(¢')=¢{ and ¢'(¢+')=¢¢{. The action
Sa(¢*, ¢; ', 0) is defined by
Sa(o*, ¢;5 t, O)ES df<ih¢*(f)<15(f)—HA(¢*(T), d)(r))), (3.3)
0
where H, is the Hamiltonian of A.

According to Feynman and Vernon,” the effect of the interaction of A with the bath can be in-
corporated by introducing an influence functional into eq. (3.2), namely,

pa(of, of5 1)=T (SDr[Q(T)]SDr[Q’(T)] exp [(i/h)S4(Q; 1", 0)]

XF(Q, Q'; t',0)exp [(—i/h)S5(Q’; t’,O)]), (3.4)
where we assume the influence functional to be of the form

F(Q,Q'; t’, 0)=exp {(—m)zg dr’S dre "IV X(Q, Q" 1)
0 0

. )  Bhy )
x| V(Q, Q% T)—l_z— Ve, Qs o) s (3.5
in which
Ve(Q, Qs 1)=vr(Q(t)+V(Q' (1)), (3.6)
V(Q, Q" 0)=V(Q(1)—V(Q'(1)). (3.7

In the above equations, we simply write O(t) or Q’(z) for (¢*(1), (1)) or (¢'*(7), ¢'(7)). To
derive this particular form, we assume that the bath is initially at a high temperature Ay <«1
(B=1/ksT) and shows the Debye relaxation with the damping constant y for the external pulsive
excitation. The coupling strength with the test system is denoted by the dimensionless constant
A. The initial condition of the total system is assumed to be the factorized form:

Pol(0)=p.4(0)P5. (3.8

Here, p4(0) is the initial state of the test system and p§ is the thermal equilibrium state of the bath
with respect to its own Hamiltonian.
Consider the hierarchical density elements

pa(of, o5 t")=T (SD[Q(T)]§D[Q’(T)]
t’ h n
x {—145 dre 7= [V*(Q, Q' T)—ié“zz Ve, 0 r)l}
0
xexp [(i/h)Sa(Q; t', O1F(Q, Q'; t)exp [—(i/h)SI(Q"; t’,O)]), (3.9)

and corresponding operators p,(t’). The first member of this equation has appeared in eq. (3.4)
and, with this choice, the equation of motion for the test system is expressed in the hierarchical
differential equations:

a
5 pn(t)=((h)"'H—ny)pa(t') =14V pps1 (1) —nidOp,- (t"). (3.10)
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Here, we set

h
@sV*—i'[}—zj—) Ve, (3.11)
with the notation of eq. (2.4) and
F°G=FG+GF. (3.12)

As seen from the definition, initial conditions of eq. (3.10) are given by
po(0)=p4(0), p,(0)=0. (nz1) (3.13)

As was shown in ref. 1, the resolvent for the test system is then nonperturbatively evaluated in
the continued fractional form:

pols1=Zo[s]pa(0), (3.14)

where

Zo[s]= (3.15)

AZ

®
(0]

S—(lh)_lH;’i"Vx 2A2

s+2y—(Gh) H;+

s+y—@Gh) 'H;+V*

Now we wish to evaluate the time-dependent correlation functions of eq. (2.3). We suppose
that the operators X and Y work only for the test system A. Therefore, for example, a one-time
correlation (or the expectation value) with the initial condition (3.8) is expressed by using the in-
verse Laplace transformation of po[s] as

c+io0
<Y(t)>=-2-7%—.g dse” tra{ Ypolsl}, (3.16)
where the constant ¢ is chosen in such a way that all singular points of the integrand lie on the left
side of the path and tr,{ } means the summation over the A states. The evaluation of two-time

correlations is more complicated than (3.16), though it can be done by considering the following
hierarchical elements

an(ef, df;t”,t")=T (SD[Q(T)] SD[Q'(T)]X(Q(V))
X {—iA Y dre 7" ~9 [V"(Q, Q’; T)—i? Ve(Q, Q' T)]}n

xexp [(i/h)S4(Q; t", 01F(Q, Q"; t)exp [—(/h)SI(Q"; t", 0)]), (3.17)
and corresponding operators o,(t”, t’). Using the first member of these operators, we write eq.
(2.3) as

ny(t, t0)=trA{ YG’o(t+t0, to)}. (318)

The Laplace transformation of this correlation with respect to ¢ is performed by considering the
time differentiation of ag(¢”, ¢') with respect to ¢”. In the region ¢” >¢’, the same approach used
in eq. (3.10) leads us to the following set of equations:

ad
377 (1", t")=((h)'H} —ny)a,(t",t')—i4V *G,s:1(t", t')—nidOac,-(t",t"). (3.19)

These equations have the same form as eq. (3.10). However, from definition, the initial condi-
tions of (3.19) are now given not by the element po(0) but by the set {ao(to, to), a1(to, to)," -},
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where a,(t, t)) is defined by eq. (3.17). Therefore, the Laplace transform of ao(¢+fo, f) with
respect to ¢ is now given by (see Appendix)

aols, to)=Zolslao(te, to)+ D, (—id4)'Zo[s] (H (VXZk[S])> an(to, to), (3.20)
n=1 k=1
where
1
Zk[S]z 2 .
st+ky—(@Gh) ' H;+V"™ (k+1)4 (k1 2)A° e
s+H(k+D)y—(@Gh) 'Hi+V”™ STk 2y—Gh) H - @]
(3.21)

By using p. (%), the initial conditions &,(f, f) can be written as:
an(to, to)=Xpn(to). (3.22)

The Laplace transformation of p,(#) is also given in the Appendix and the final expression of the
two-time correlation function is then

Cyxls, so]=tra {YZO[S](XZO[SO]pA(O))+ i} n'(iA4)*"YZ[s)

X (,E, (V*Zk[s])) [X <1:Il (Zn-j+1 [sO]@)) Zo[sO]pA(O)]}. (3.23)

§4. Nonperturbative Effects of Two-Time Correlations

In this section, we explore the nonperturbative features of eq. (3.23) and compare this equa-
tion with the results obtained from the projection operator method. Let us introduce the projec-
tion operator P and its complementary projection Q by

P=p%-trs{, 4.1)
and
Q=1-P=1—ph-trs{, 4.2)

where, as already shown in eq. (3.8), p represents the equilibrium density operator of the bath
system. By inserting P and Q in eq. (2.8) on the left-hand side of X, we can decompose this equa-
tion into two components:

1 1
Cyx|s, so]=tr {YW P (Xm ptot(O))}

! 1
+tr {YWQ (Xm p!ot(o))}. (4.3)

We assume that the initial condition of this equation is given by eq. (3.8). The first term of eq.
(4.3) corresponds to that of eq. (3.23), since the first term of eq. (3.23) arises from the operator
oo(to, to) of which the bath state at time ¢, is in the equilibrium state p§. Therefore, the second
term of eq. (4.3) corresponds to the remaining terms of eq. (3.23). It should be mentioned that
practical calculations of eq. (4.3) have been done by neglecting the second term, assuming that
the bath state is always in its equilibrium state, p%. As an example, consider an atomic two-level
system linearly interacting with a vacuum radiation bath.** By eliminating the bath, the equation
of motion for the two-level system (master equation) is written as
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P (1) =P - H*poult) —> pa(t)=

h

where H, is the Hamiltonian of the two-level
system and /" is the hyperoperator expressed in
the atomic creation and annihilation operators
a* and a as

2

—(é—x—ié) pata,
in which « and & are the natural radiation dam-
ping and the Lamb shift, respectively. To
derive this form, the resonant approximation
was used and the weak and ultrashort cor-
related perturbation was assumed (white-noise
approximation). Thus, the resolvent of this
system is written as

-Ip=kapa™* — (lK—*‘ié) a*ap

4.5)

p4(0). (4.6)

PASI= T T

Using this approach, the time evolution in
two-time correlations is also described by eq.
(4.4).% In our notation, this is expressed as

1
s—({h) ' HI+T

Cyxls, so]l=tra {Y

1
* (Xso—(ih)—‘H,: +r”"(0))}’
4.7)

which corresponds to the first term on the
right-hand side of eq. (4.3) under the weak
and the white-noise approximation. The sec-
ond term of eq. (4.3) is neglected in this ap-
proach. This neglect is the result of using the
weak and the white-noise bath such as the
vacuum radiation field. The validity of eq.
(4.7) is then determined from the strength of
the interaction and the correlation time of the
bath.

To view this point from our approach, we
derive a corresponding equation from eq.
(3.23). The effect of modulation in eq. (3.23) is
generally characterized by the parameters 4,
y, and v4, where the last one is a characteristic
frequency of the quantum level difference of
the test system. If the condition

A<y, va (4.8)

(Vol. 58,

1«
".—HA pA(l)“rﬂA(f),

- (4.4)

is satisfied, the higher order interactions can
be neglected. Then, omitting the second term
of eq. (3.23), we have

1
s—({h)"'H +TI"

1
* (Xso—ahr‘H: +r ”A(O))}’
4.9)

Cyxls, so]l=tr4 {Y

where
A2
r'=v:— m—m——ao.
y—@{h)"'H;
In the random modulation problem, the
modulation condition which leads to the
Markoffian character is said to be the mo-
tional narrowing limit and is given by

(4.10)

vay«1/ph. 4.11)
In this case, eq. (4.10) is expressed as
I'>Ir=y'VvVv> —idv> ve, (4.12)
where V' =A%y, 4.13)
and
id=iy hpy/2. 4.14)

Equation (4.9) with eq. (4.12) corresponds to
eq. (4.7), but eq. (4.7) has been specified as
the interaction of V=a+a* and has been
used as the resonant approximation. The
validity of eq. (4.13) is now secured by ine-
qualities (4.8) and (4.11). If these conditions
are not fulfilled, the second term on the right-
hand side of eq. (4.3) becomes quite impor-
tant. We will discuss this point in forthcoming
papers.

§5. Conclusions

Using a specific model for the system, we
have deduced the double Laplace transform of
two-time correlations. The result is expressed
in continued fractions in terms of
hyperoperators. This result enables us to
evaluate the effects of higher order interac-
tions which are neglected in existing ap-
proaches. To observe a point more closely, we
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introduced the projection operator and com-
pared our results with those of the conven-
tional master equation approach.

Finally, we should notice the relation be-
tween our results and those of the stochastic
approach. As was discussed in ref. 1, our
theory is connected with the stochastic Gauss-
ian-Markoffian models. In the stochastic ap-
proach, some calculations have been carried
out especially for the optical processes. It was
shown that the strong random modulation
gave rise to a mixture of the coherent and in-
coherent processes which was the result of the
disturbance in the quantum coherence of the
system by the random modulation.” In the
stochastic approach the second order emission
spectrum from this mixture process was
termed the broadened Rayleigh or the broad-

~ i "

ools, to) s+ﬁHA i iav>
,,,,,,,,,,,,, I,
a1 [s, to) i40 Es+%H§+y
|
oals, to) | 0 E 2460
oils, to) 0 E 0
|
I
|

We denote this equation by

G[s]=RI[s]1G(t0).
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ened Raman line.'” However, the correspond-
ing process has not been recognized in the
dynamical approaches. Our results allow us to
clarify this point more closely. We will show
that the second term of eq. (3.23) gives rise to
a mixture of the coherent and incoherent pro-
cesses from the dynamical point of view. We
will discuss the details in forthcoming paper.'”
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Appendix

The Laplace transformation of egs. (3.10)
and (3.19) can be expressed in the matrix
form. For example, eq. (3.19) is written as

0 0 17T oo(to, o) )
iav> 0 a1(to, to)
%H; +2y iAV* G2(to, L)
31460 a3(to, to)

(A-1)
(A-2)

For any matrix D, with operators or matrix elements A, B, C, D;, we have the following relation:

-1

A B z —ZBD;!
Dy'=| o h| = [ v : (A-3)
cC ' D —-D;!CZ Di'+D;'CZBD;!
where we put
Z=(A—BD;'C)™". (A-4)
By using this relation, the element (R[s]).; is easily evaluated as
1
RIsDu=Zols]= (A-5)

A2

s—@{h)'Hi+V”~

s+y—(Gh) 'H;+V"*

 —
s+2y—(@h) H;+

To evaluate the element ao[s, o), we should evaluate (R[s]),;. Using eq. (A-3) and eq. (A-5), we

may write

(Di)p=—2ZBDi'=—Z,[s]X[idV* 000 ---]xD,

(A-6)
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where (Dy)g is the row vector with elements (R[s]),;(/>1). Then the element (R[s]):, is evaluated
as

(RIsD2=Zo[s](—=i14V™*)Z,[s], (A-7)

where Z,[s] denotes the element (D1 ');; and is similarly evaluated as eq. (A - 5). By successive ap-
plications of eq. (A-3), we have (R[s]); in the form:

(RIsDy=(=14) "' Zo[s1(V* Z\[sD(V* Za[s1)- - - (V*Z -1 [5])

=(—=14)7'Zo[s1 [T (V*Z[sD), (jz=2) (A-8)
k=1
where
AGE 1
k - 2 .
s+ky—(Gh) 'H+V"* (k+1)4 ESYE )]
s -1 X X
SHUH Dy =) AV 2y =Gy H T ©
(A-9)
Then the Laplace transform of ¢ is given by
aols, to)=Zo[s]ao(te, to)+ > (—id4)"Z[s] (H (Vka[S])> an(to, to). (A-10)
n=1 k=1

Operators p,[s] of eq. (3.22) are calculated by evaluating (R[s]);. A similar method allows us to
write these elements in the form:

RIsDH==DU=14) " (Z;-1[s1O)NZ;-2[510)- - -(Z:[5]10) Zy[s]

. i1
=(—DI(—ia)™! (H (Zj~k[S]@)> Zo[s]. (jz2) (A-11)
k=1
Therefore, we have (1969) 464.
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