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A two-level system diagonally coupled to a heat bath consisting of harmonic
oscillators with a proper frequency spectrum producing a Markoffian random pertur-
bation is considered. Assuming relatively weak or fast modulation conditions, we
calculate spectra from the system driven by a continuous wave and a pulsed laser of ar-
bitrary strength by applying the physical spectrum proposed by Eberly and
Wodkiewicz. The results give the coherent and the incoherent spectra; clarification of
how dynamical evolution of these components is influenced by the change of physical

parameters is obtained.

§1. Introduction

Due to the progress in pulsed laser techni-
que, there has been a growing interest in time-
dependent resonance scattering.'™ Investiga-
tion of this sort of problem has always been
regarded as a means of studying relaxation
processes. This technique also allows us to
look into the effects of perturbation from a
bath on the coherence property of a scattering
process. It is well known that an emission spec-
trum from a system interacting with a bath
driven by a laser consists of coherent and in-
coherent components.>'? The coherent com-
ponent, such as the Rayleigh or the Raman
scattering, conserves the quantum phase
coherence, whereas the coherence is inter-
rupted in an incoherent process, which is usu-
ally called the fluorescence or the lumines-
cence, by the perturbation from the bath. In
the study of the continuous wave (CW)
response spectrum, separation of these com-
ponents is relatively simple for a commonly
assumed white-noise bath, since the coherence
is then completely destructed by the random
perturbation. But, for a colored-noise bath,
the separation of these components is difficult,
since in this case there appears a mixture of the
coherent and incoherent processes called the
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broadened Raman or the broadened Rayleigh
scattering.'"™™ An analysis of the time-depen-
dent spectrum gives us a deeper understanding
of the problem and allows us more detailed
considerations.

The present paper reports the CW and time-
dependent emission spectrum from a two-level
system which is diagonally interacting with a
bath and is driven by a CW and a pulsed laser
of arbitrary strengths. The spectrum we
calculate here is the physical spectrum prop-
osed by Eberly ef al.''® This problem has been
treated by Czub and Kryszewski for a three-
level system diagonally interacting with the
white-noise bath.'® We extend their treatment
to the colored-noise bath by making use of our
previous theory which was developed with
regard to the stochastic Gaussian-Markoffian
approach.'”' Here, we simplify the model by
assuming that the system-bath interaction is
relatively weak in comparison to the inverse
correlation time of the interaction. This is the
same as supposing a relatively fast modulation
rate for the bath. This simplified model is
equivalent to the stochastic two-state jump
model where the random variable of the bath
takes only two values.

This paper is organized in the following
way. In the next section we formulate, using
our previous formalism, the time evolution of
a two-level system coupled to a bath and
driven by a CW and pulsed laser. In §3 we pre-
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sent the physical spectrum from this two-level
system. In §4 we calculate these spectra for the §2.
diagonal modulation model. In this study we Let us consider an atomic two-level system
show that the effect of modulation acts on the  described by a ground state 10» and a single ex-
Liouvillian of the system as the additional cited state | 1) with energy separation w,. For
damping and frequency shift. In §5 we discuss  this system, annihilation and creation
the very slow modulation case by regarding  operators are denoted by @ and a”, respec-
our model as a stochastic two-state jump tively. The equation of motion for the density
model and consider the mixture of the operator of this system interacting with a
coherent and incoherent processes. Section 6  monochromatic laser is described by the quan-
is devoted to the summary and conclusions. tal Liouville equation (master equation)*®

p()=—iL(t)p(1), 2.1

where the quantal Liouvillian L(¢) is

Time Evolution of Two-Level System

—iL(t)p= —iwo(aTa)*p+iR(e Ma* +e™a) ptrapa™ —-% k(ata)“p, 2.2)

in which « is the natural radiation damping and v is the frequency of the incident laser light. The
constant R is the amplitude of the incident light expressed as the Rabi frequency. Assuming that
v ~ wo, the rotating-wave approximation is adapted for the coupling of the system with the laser
light. The hyper-operators denoted by the superscripts, X and O, are defined by

F°G=FG+GF,

F*G=FG—GF, (2.3)
for any operators F and G. The density operator p(¢) may be expanded in the form
p()=Pi(£)11 1)+ P(1)10 0)+ P;(¢) e |1 0)+Py(t)e™l01), (2.4)
where we have introduced the notation
LY =1ij ). (2.5
The Liouvillian eq. (2.2) is expressed in terms of the expansion coefficients of eq. (2.4) as
P(t)= —iLP(t). (2.6)
Here, P(¢) is the column vector with the components P;(t) (j=1,- -, 4) and iL is the matrix
K 0 iR —iR h
—K 0 —iR iR
iL= , 2.7
iR —iR —;—K—iwl 0 @.7)
. . 1 .
L —iR iR 0 —2—K+1w] ]

where we put w;=v— w,. Equation (2.6) with (2.7) is the well-known optical Bloch equation and
parameters kK and %K correspond to the longitudinal and transverse relaxation rates, respectively.
The Laplace transform of this is then

Pls]= 5_%1—[? P(0), (2.8)

where § is the unity matrix multiplied by the Laplace parameter s and the fractional expression
means the inverse operator.
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We now consider that the two-level atom is brought into contact with a heat bath as was
treated in refs. 17 and 18. Namely, we assume the bath-system interaction linear in the coor-
dinates of the bath oscillators which are eliminated with the use of Feynman-Vernon’s influence
functionals to yield the hyperoperator expression,

1

plsi= ; p(0), (2.9)

s+HiL+ VX 4 2]

. 242
sty+iL+ V> e
s+2y+iL+ V> 342 e
s+3y+iL+- -

where because in this approximation we take into ac-
O=V*—isV" (2.10) count only two bath states defined by the path
) integrals, namely the equilibrium state and
with one-phonon excitation state of the bath. Thus,
5=phy/2. @.11) if we regard our bath as a two-state jump

Here, V is the operator of the test system
coupled to the bath oscillators and A is the
coupling constant. The constant y and =
1/ksT are, respectively, the Debye relaxation
rate and the initial temperature of the bath.
The constants A4 and y correspond to the
modulation amplitude and rate in the
stochastic theory respectively.
When the condition

AKY, Va, (2.12)

is satisfied, the deeper stages of the continued
fraction can be neglected. Here, va is the
characteristic frequency of the system. We
write the matrix expression of V> and ® as V
and W. Then we can express the resolvent as

Z[s]= (2.13)

S+iL+®(s)’

where

D(s)= V; w

) 2.14
S+G+iL ( )

and G represents the diagonal matrix with the
constant y. Note that the condition eq. (2.12)
secures the Gaussian property of the modula-
tion, but we need not assume y so large com-
pared with A, since the continued fraction eq.
(2.9) converges quickly even for not so large y.
We also note that, by neglecting the term of
id, eq. (2.13) with (2.14) coincides with the
resolvent of the stochastic two-state jump
modulation model (see appendix of ref. 14),

stochastic model, the condition, eq. (2.12),
may be removed.

The inverse matrix eq. (2.13) can be
analytically evaluated. The common de-
nominator of the elements of the matrix eq.
(2.13) is expressed in a polynomial of s as

(s—S)(s—s)(S—8)(s—83) - - (s—5n). (2.15)

One of the roots is so=0. Other roots s,
s2, -+, S, are evaluated numerically. Then, us-
ing the inverse Laplace transform of Z|[s], we
can express the time evolution of P(¢) with the
initial condition P(0) as

P(t)=Z(t)P(0), (2.16)
where
Z(t)=iZ,—eSf’, 2.17)
Jj=0
and
Z;=(s—5;)Z[s]!s=s. (2.18)

Now we consider a squared pulse laser

defined by
R 0O<t=T)
R - (2.19)
0. (¢>T)

The corresponding Liouvillian is then given by

O<t=T)

«>T) (2.20)

L(1) [L
-
L0=L |R=0-

The time evolution of P(¢) is now described
by
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[Z(1)P(0) O<t=<T)
P)= (2.21)
1C(t—T)Z(T)P(O)+U’(t——T)Q(T)P(O), (t>T)
since the higher order interactions which were ' 1
discussed in refs. 18 and 19 play an important = e , (2.26)
role at the switching off time, 7. Here, C(?), S+iL+ W—m | 4
U’'(t) and Q(¢) represent the inverse Laplace Sl !
transform of the matrices, C'[s]= yE ’ (2.27)
S+HiLo+W—T7"7V
= , 2.22 S+G+ilL
ClS1= S Lo Do(s) (222) ’
. and
U'[s]=C[s]V —, (2.23) —iA
S+G+ilL, Ulsl=———— WC 2.28
Ls] S+G+iL, [s1. (2.28)
and
_ The denominator of egs. (2.24-2.26) can be ex-
=—— WZ|[s], 2.24 pressed as
Qls] ST OTiL [s] (2.24) y - .
SHPIS—s)E—5)(—S83) - (s—sSn), (2.
where @,(s) is obtained from eq. (2.14) by put- () 1 2)( ’ )
ting R=0. where the roots s;, s, - -, s, are the same as
For later convenience, we also define the those appearing in eq. (2.15). The
following matrices: denominators of egs. (2.22), (2.23), (2.27) and

(2.28) are analytically evaluated, but are not
(2.25) shown here.

S+G+iL’

Q'[s1=Z[s]V
§3. Physical Spectrum

Z’[s] =S+G+iL+S+ G+il WZls] Now we proceed to the formulation of den-

—iA sity elements to the time-dependent physical

XV —r spectrum. As was shown in ref. 16, the
S+G+iLl

physical spectrum presented by Eberly and
Wodkiewicz” can be written as

!

I(w, t)y=4ltexp [—213t] Re {S dt’S dt” exp [([t+iw)t’'] exp [(Ii—iw)t” 1C(¢", t’)}.
0 .

3.1)

In this equation, [} is the spectral bandwidth of the Fabry-Perot interferometer, and
C@t",t"y=<a"(t")a(t’ p=tr {p(0)a™(t")a(t')} (3.2)

is the correlation function of the dipole moment expressed by Heisenberg operators of atomic
system a*(¢), a(¢) and the density operator of the total system p.(0). Here, for simplicity, we
have omitted the proportionality constant between the amplitude of the observed scattered light
and the dipole moment. This equation includes the coherent and incoherent components. Follow-
ing the CW study of Knight and Milonni,” we define the coherent component of the correlation
function by

Cean(t”, t")=<La*(t")a(t' p=tr { p(0)a™ (")} tr { pi(0)a(z)}. (3.3)

We write the coherent spectrum calculated from this term as /..n(w, ). By subtracting eq. (3.3)
from eq. (3.2), the incoherent element may be expressed as

Cinc(t”,t)=C(t",t")=Ceon(t”, t')=L(a*(t")—<a* (" ) a(t")—La(t' D). 3.4
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The incoherent spectrum denoted by Jin(w, ¢) can be evaluated from the above equation in princi-
ple, but practical calculations will be done by subtracting I..n(w, ) from eq. (3.1).

For the total Liouvillian L(7) and the density operator p(¢), C(t”, t') can be expressed in the
operator form as'?

-
c@”,t')=tr {a* exp. [—is L(7) dr} (ap(t’))}, (3.5)
.
where the arrow indicates the ordered exponential. This function can be evaluated by using the
matrix expression of iL(¢) and p(¢).

3.1 CW response

First we present the physical spectrum of the CW response in order to make references of the
time-dependent spectrum. For the CW excitation Liouvillian eq. (2.7), we may write the physical
spectrum of eq. (3.1) as

I(w, t)y=4Itexp [—2I%t] Re {S’ dt’ St det”g(t")g*(t")Ci(¢", t’)}. (3.6)
0 p
Here, g(t)=exp [{I+i(w.—w1)}?] with w,=w —wy and the correlation function is defined by
Ci(t",t'")=TD*Z(t"—t')D"P(t')+TD*Q’'(t" —t')D"P'(¢t'), 3.7
in which
P(t")=Z(t")P(0), P'(¢")=Q(t")P(0). (3.8)
The matrices T, D* and D~ are, respectively, defined as
T=[11 0 0], 3.9)
0000 0001
D= OOIO,D+= OOOO' 3.10)
0000 0100
1000 0000

By taking the limit /=00, the CW spectrum is obtained from eq. (3.6) with eq. (3.7). Changing
parameters as t=t"—¢’ and ' =¢— (¢’ +¢”)/2 and performing the integrations in eq. (3.6), we
have

I(w)=2Re{TD " Z[sID P+ TD*Q’'[S]D P’} s=ri+i(ws—w) (3.11)
where the equilibrium density vectors P¢ and P’¢ are defined by
P*=1im 50Z[so] P(0), P =lim S0Q[s0¢] P(0). (3.12)
so—0 so—0

The initial conditions are assumed to be P,(0)=1 and P;(0)=P5(0)=P40)=0. Then eq. (3.11) is
expressed in the matrix elements as

I(w2)=2Re { Zp[S1PS+ Zuls1P5+ Quls] P+ Quls1 P}  s=rtitws—wn)- 3.13)

3.2 Pulse response

Now we present the time-dependent physical spectrum driven by the pulsed laser eq. (2.19).
For the time #< 7, the physical spectrum I(w, t) is calculated from eq. (3.6). For the time 7+,
this is given by
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T o
g dt’S de”g(t')g*(t")Ci(t", t")

Y0 4

I(w, T+1t)=4lvexp [—1(T+71)] Re (

T T+t
+S df’} dtug(,/)g*([u)cz(tr/’Iu)
0 t'

+S:+r dt’ S{Tlﬂdt"g(t’)g*(t”)Cg(t”, t’)). (3.14)
Here,
Cy(t",t')=TD*C(t"=TYZ(T—t")D P(t")+Q (T—t")D"P'(t")}
+TDYU (" —THQ(T—t")D P(t')+Z'(T—t")D™P'(t')}, (3.15)
and

Ci(t”,t")y=TD*C(t"—t'"){C(t'—=T)D " P(T)+U'(t'— TYD P'(T)}
+TDYU (t"—t' YU —T)D"P(T)+C'(t' — T)YD P'(T)}. (3.16)
We consider the case that, before the pulse excitation, the test system reaches the equilibrium
state P§ under the bath modulation, which is evaluated from eq. (3.12) by putting R=0. Since
the bath-system interaction does not excite the system for a diagonal modulation model, which

will be discussed in §4, P§ coincides with the initial state P(0). Then the matrices P(¢) and P'(T)
of the above equations may be evaluated from eq. (3.8). The coherent component is evaluated by

Ceon(t”, t")=Pa(t")P5(t"). (3.17)
Here, P;(t) is calculated from eq. (2.21).
§4. Diagonal Modulation Model
If we suppose that the bath interactions with the system are diagonal, then
V=a"a. 4.1)

This interaction induces the fluctuation of the atomic resonance frequency and has been studied
extensively in the stochastic approach.'"'"¥ The CW response spectrum of a similar system was
studied by Tsunetsugu and Hanamura from the stochastic Gaussian-Markoffian approach.'” For
the interaction eq. (4.1), hyperoperators V> and © are, respectively, given in the matrix form as

000 O 00 0 0
000 0 00 0 0
V= , W= X (4.2)
001 0 001—-i6 O
000 —1 00 0 —1-id

Then the effect of modulation eq. (2.14) is evaluated as

00 0 0
() 00 0 0 i3
S:

00 I'(s) I''*(s) |’ (4.3)

00 I''(s) I'*(s)

where
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(1—id)4? {(s+y+% K+iw,) (S+)/+K)+2R2}
I'(s)= S , (4.4)
2R*2s+2y+K)+(s+y+k) [(s+y+—2— K) +w%}
—2(1—1d)A’R*?
I(s)= (4.5)

> .
2R*2s+2y+kK)+(s+y+k) [(s+y+% K) +w%}
The time evolution of the two-level system is determined by eq. (2.13). Functions I'(s) and 7"’ (s)
act on this equation as the damping and the shift. When y and 4 satisfy the condition (motional
narrowing limit)

Ay« with A4%/y=y’, (4.6)

the off-diagonal term, 77’(s), tends to zero, whereas the diagonal term, I(s), tends to
y’ —iBhy’ /2. Thereby, in eq. (2.13), the effect of modulation in the narrowing limit can be re-
garded as the additional transverse damping and the shift of the atomic resonance frequency.

4.1 CW response

The CW response spectrum is calculated from eq. (3.13). First we discuss the coherent compo-
nent I.n(w;). Here, we set I'7=0 to compare with the previous stochastic results.'” The elements
of Z[s] have the pole at s=0, whereas elements of Q’[s] have the pole at s= —y. The pole s=0
gives rise to the delta-shaped peak at the incident laser frequency w,=w; which is called the pure
Rayleigh component and agrees with the coherent component calculated from eq. (3.3) as

Icoh(wz)=2n6(w2—wl)P§-Pi
:2715(602_601)

K*R*?

2

1 K—i(w,—w)+T0)+17(0)

2

X 2

{K [ l—é—x—i(wz—wl)+1"(0)

For a weak incident light, namely where x, y,
(w2— w)>» R, this equation becomes

RZ
Toh(2) =271 (w2 — w)) 0 3
‘EK"‘A(Q)])"‘]CL}]
(4.8)
where
2
A = . .
(1) S Fio; 4.9)

This result agrees with those of the second-
order optical process of the stochastic two-
state jump modulation model,'""'¥ since in this
case of weak incident light, the higher order
optical processes can be neglected.

Next we discuss the incoherent component

2
—r'(O)z} +4R*Re [i x+r(0)+r'(0)]}

(4.7)
2

I.(w;). This component can be evaluated in
an analytical form. However, despite the
simplicity, the resulting expressions are quite
lengthy therefore here we only present the
numerical results. Note that the pole s= —y of
this component yields a Lorentzian peak with
the width y at w,=w, overlapping the pure-
Rayleigh peak. This component bears a mixed
character of the coherent and incoherent pro-
cesses and is called the broadened Rayleigh
component.''"' The width of this peak is 1/y
and is negligible in this fast modulation
region. This element is discussed in §5, by re-
garding our model as the stochastic two-state
jump model.

Figure 1 shows the CW spectra of the
fluorescence light for different field strength.
The other parameters are chosen as:
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k=1, w,=30, 4=10,

y=50, §=0, I;=0.001. (4.10)

The J-shaped coherent component is not
shown in the figures. Since id is small com-
pared with other parameters, the reaction
effects of the bath do not play a role in this
example. In Fig. 1(a) the fluorescence
(luminescence) peak corresponding to the
second-order optical process appears at the
atomic resonance position (w,=0). Since 4 is
so small compared with y, the broadened
Rayleigh component at the incident frequency
w,=30 is unnoticeable. Figure 1(b) shows the
emission spectrum for a stronger laser excita-
tion. In this case, higher order optical pro-
cesses become dominant and a fluorescence
peak also appears at w, =30, while the peak at
the atomic resonance frequency w,=0 is
slightly shifted by the mechanism of the
dynamical (AC) Stark effect.®*” In Fig. 1(c) of
the very strong excitation, three splitting
peaks appear at the laser frequency w,=30
and at the satellite positions corresponding to

X107 (a) R=1.0
2 -
j) 0 1 1 1 1
p 1072
X —
% gl (b R =5.0
O
P L
£
4 -
C
o) u
Um) 0 1 1 A 1 1
E -1
L x102_(C) R = 20.
1k
oL A 1
-80 0 A B0 100
Emission Freq. w»
Fig. 1. Emission spectra for various strengths of ex-

citation field R with the fast modulation. In this
figure (and the following figures) an arrow indicates
the position of the laser frequency w,. The d-shaped
Rayleigh peaks located at w,=30 are not shown in
the figures but their heights are given by (a)
7.2%107%, (b) 1.2%x 107" and (c) 2.0x 107",

(Vol. 58,

the virtual Stark levels at about w;= —20 and
80. As was discussed in ref. 6, if the natural
radiation damping was the only mechanism of
the relaxation process, these Stark satellites
should show the same height at symmetrical
positions. But when the bath modulation is im-
posed, the peak arising from the virtual level
closer to the atomic resonance level w,=0
becomes higher than the other, since the
resonance absorption caused by the fluctua-
tion of the resonance frequency gives rise to
the additional fluorescence processes which
decay from the virtual level near the atomic
resonance frequency.”'”

4.2 Pulse response

The time-dependent spectrum driven by the
pulsed laser is calculated from eq. (3.14). The
numerical examples are shown in Figs. 2-4. In
these figures, the parameters are chosen as the
following:

k=1, =30, A=10, y=50,
=001, T=2, Ii=1. (4.11)

Figures 2(a) and 2(b) illustrate the incoherent
and coherent components driven by the weak
incident pulse which corresponds to the sec-
ond-order optical process. At the very first
stage, both coherent and incoherent spectrum
are broadened, since there is a frequency
uncertainty of the order ¢ ~!. Then the peaks in-
crease as time proceeds. In Fig. 2(a) of the in-
coherent component, the peak appears at the
atomic resonance position w,=0. This peak in-
creases about r=2.5 even though the pulse is
switched off, since spontaneous emission oc-
curs at the atomic resonance position after the
pulse with the mechanism of the relaxation
processes. In Fig. 2(b) of the coherent compo-
nent, the peak appears at the incident laser fre-
quency w;=30. The build-up speed of this
peak is faster than the incoherent one. Small
peaks appear temporarily at the resonance
position beginning when the pulse is switched
on (f=0) as well as when it is switched off
(t=T). The existence of these peaks suggests
that we cannot distinguish the coherent compo-
nent only from its position in the time-depend-
ent spectrum. After the pulse, the main peak
of the coherent component quickly decreases
with the filter bandwidth 7} and the transverse
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(b)

Fig. 2. Time-dependent emission spectrum from a two-level atom (a) the incoherent component and (b) the
coherent component for a weak pulse strength R=1 with y=50. The pulse is switched off at r=2.0. For
reference, the maximum value of (a) at t=2.5 and w,=0.01is 1.6 x 10~ and that of (b) at r=2.0 and w,=301is

1.7x107°.
(a) (b)
Gl eTEEE
=y iR
= = e
- ..,’:2.{',!4/

ST 0

N e TR,

T T s
ORI

TR
IR k jout

Fig. 3. Same as Fig. 2 except a pulse strength R=5. For reference, the maximum value of (a) at r=2.3 and
w,=—2.0is 3.2x 107% and that of (b) at 7/=2.0 and w,=301is 3.1 X 1072,

& i\
SR eINAN
RaeesiatT Ry
=

Fig. 4. Same as Fig. 2 except a strong pulse strength R =20. For reference, the maximum value of (a) at r=2.0
and w,=—201s 1.1 x 10”" and that of (b) at r=2.0 and w,=30is 5.6 x 107>,

relaxation rate of eq. (2.21). Figures 3(a) and  case of Fig. 2(b). Figures 4(a) and 4(b) show
3(b) show results for a strong pulse, R=5. In  results for a very strong incident pulse. In Fig.
Fig. 3(a) of the incoherent component, the 4(a), during the pulse excitation, three Stark
peak at the laser frequency is the fluorescence  peaks appear at the incident laser frequency
of higher order optical processes and, after the  and virtual Stark levels. When the pulse is
pulse, this quickly disappears. In Fig. 3(b), switched off, these Stark peaks decrease
qualitative features of the coherent compo- quickly, since the virtual levels vanish with the
nent do not change from the weak incident pulse. The spontaneous emission peak builds
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up at the atomic resonance position. In Fig.
4(b) the coherent component becomes small
compared to the incoherent process. How-
ever, qualitative features are not changed.

§5. Two-State Jump Modulation

In the previous section, we regard our
model as an approximation of the dynamical
system interacting with a stochastic Gaussian-
Markoffian bath. But our model can also
apply to the slow or strong modulation case by
regarding the model as the stochastic two-state
jump modulation with the amplitude A and
modulation rate y.'""'¥ In the following discus-
sion, parameters are the same as eqs. (4.10)
and (4.11) except y=3.

The CW response spectra are given in Fig.
5. The J-shaped coherent component is not
shown in figure. In the weak incident case of
Fig. 5(a), two luminescence peaks appear at
the two possible stochastic levels, —4 and 4
(4=10). The peak at w,=30 is the broadened
Rayleigh component, as discussed in refs. 11
and 14. In Fig. 5(b), the central peak of the
dynamical Stark component appears at the in-

0| (@) R =1.0

X102 (p) R =5.0

Emission Intensity

107 (C) R = 20.

1 J\ 1

0 A ©0 100
Emission Freq. w2

Fig. 5. Emission spectra of a two-state jump modula-
tion model for various strengths of excitation field R
with slow modulation y=3. The delta-shaped
Rayleigh peaks located at w,=30 not shown in the
figures are given by (a) 8.7x107°, (b) 1.7x 107" and
(c) 5.7x 107",

Yoshitaka TANIMURA and Ryogo KUBO
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cident laser frequency w,=30 overlapping the
broadened Rayleigh peak and they can not be
distinguished. In Fig. 5(c) of the very strong
field, two possible levels, *+A4, show the
dynamical Stark splitting, and five peaks
appear.

The time-dependent spectra are given in
Figs. 6-8. The coherent components are not
shown here, since the qualitative features of
these are similar to the fast modulation case.
Figure 6 shows results for weak excitation. In
this figure, peaks at w,=—4 and 4 (4=10)
are fluorescence peaks and w,=30 is the
broadened Rayleigh component. The broad-
ened Rayleigh peak is wider than the coherent
component. The time evolution of the
broadened Rayleigh is similar to that of the
coherent peak, but it decays faster than the
coherent one after the pulse excitation is ter-
minated. For the strong excitation case of Fig.
7, the fluorescence of the higher order optical
process appears at the incident laser frequency
during the pulse excitation, and can not be
distinguished from the broadened Rayleigh
component. For a very strong excitation of

—=0 S Y S fESSS
s aeas i oe e . L

Fig. 6. Time-dependent spectrum of the incoherent
component of the two-state jump modulation model
for a weak pulse strength R=1. The modulation ratio
is chosen as y=3. For reference, the maximum value
of the figure at r=2.8 and w,=10is 5.0x 107",

Fig. 7.

Same as Fig. 6 except a pulse strength R=S5.
For reference, the maximum value of the figure at
t=2.6 and w,=8.0is 9.9x 107°.
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Same as Fig. 6 except a strong pulse strength
R=20. For reference, the maximum value of the
figure at /=2.5 and w,=30is 8.9 x 1072,

Fig. 8.

Fig. 8, five Stark splitting peaks appear and,
after the pulse, these peaks quickly decrease
and spontaneous emission peaks build up at
two possible stochastic levels. The build-up
speed is slower than that of the corresponding
peaks of Fig. 4, since the relaxation caused by
the random perturbation is slower.

§6. Summary and Conclusions

In this paper we formulated the physical
spectrum of a two-level atom driven by the
CW and pulsed laser coupled to the finitely cor-
related bath. The emission spectrum was
separated into the coherent and incoherent
components and the time evolution of each
component was discussed for various condi-
tions.

Using these formulae, we investigated the
CW and the pulse response spectrum for the
diagonal modulation model. From the CW
study, we show that, for weak excitation, the
higher order optical processes can be neglected
and the single fluorescence peak appears at the
atomic resonance position corresponding to
the second-order optical process. For strong
excitation, the higher order optical processes
play a role and three Stark peaks appear at the
laser frequency and the corresponding two vir-
tual-Stark levels. The side peak near the
atomic resonance position becomes larger
than the other peak. From the study of the
pulse response, we see that the time evolution
of the coherent component, except transient
peaks appearing at the atomic resonance posi-
tion, follows the pulse envelope, whereas the
incoherent components do not follow, since
the evolution of the incoherent component is
governed not only by the pulse excitation but
also by the relaxation processes. For a weak ex-
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citation pulse, the fluorescence peak corre-
sponding to the second-order optical process
appears and evolves in time. Since spon-
taneous emission occurs, this peak increases
for a moment after the pulse. For strong ex-
citation, the dynamical Stark splitting occurs
during the pulse excitation. The Stark peaks
decrease quickly when the pulse is switched off
and the spontaneous emission peaks at the
atomic resonance position build up. For all
ranges of excitation, qualitative features of
the coherent component do not change.

We confined ourselves to the relatively fast
modulation region in §4. But we also exam-
ined the slow modulation region in §5 by re-
garding our model as stochastic two-state
jump model. The characteristic feature of this
case is that there appears a mixture of the
coherent-incoherent  process called the
broadened Rayleigh at the laser frequency.
Although the realistic system does not show
the two-state jump characteristic, this treat-
ment is useful to obtain insight into the nature
of the coherent-incoherent mixed character.
Extension of the analysis to the case of a
general Gaussian-Markoffian bath is impor-
tant and of great interest. We leave this exten-
sion for future study.

We conclude this work by pointing out that
the responses to short pulsive excitations are
generally fairly complicated and that they
do not directly reveal the natures of the
dynamical processes the atom may experience
in the excited states. Clarification of this point
is also left for future study.
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