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A general formulation is given for the second order optical process of a three-level
system in contact with a heat bath consisting of harmonic oscillators with a proper fre-
quency spectrum producing a Markoffian random perturbation. Elimination of the
bath using the influence functional method of Feynman and Vernon yields a con-
tinuous fraction expression and the result affords a basis to clarify the relation be-
tween the stochastic and dynamical approaches to treat the partial destruction of the
quantum coherence of the optical process. As an example, a three-level system with in-
termediate-state interaction is treated in some detail.

§1. Introduction

In the present work, we study the second
order optical process as an example of a quan-
tum process in a dissipative environment. This
study can also be extended to the tunneling
problem, since by replacing photons with elec-
trons, the optical system can be regarded as a
kind of tunneling system. The interaction of
the system with its environment destructs the
coherence of the quantum process. In the sec-
ond order optical process, there is only the
Raman scattering where the quantum
coherence of the whole system from the initial
to the final states through the intermediate
states is maintained if the natural radiative
damping is the only mechanism acting in the
intermediate states. When the random modula-
tion from the environment comes into play to
perturb the system, the coherence is disturbed
and two types of incoherent processes appear;
one is the luminescence in which the coherence
of the process is completely lost and the other
is the broadened Raman where the coherence
is only partially lost. The physical essence of
this problem lies in the way how the coherence
is affected by the modulation from the environ-
ment.

In order to investigate this sort of problem,
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two theoretical approaches have been widely
used. The first is the dynamical approach
in which the environment is explicitly
represented by a dynamical system, e.g., by a
set of oscillators, and their interaction with
the system is treated in a dynamical way. The
second is the stochastic approach in which the
effect of environment is represented by a
stochastic variable which perturbs the system.

The dynamical approach is microscopic and
quantitative, but actual calculations are com-
plicated and are not transparent. Analytical
treatment is possible only for a weak and fast
modulation case. The broadened-Raman emis-
sion, which appears in more ordinary condi-
tions of modulation, cannot be treated in this
approach, so that it is difficult to attain a deep
insight. On the contrary, the stochastic ap-
proach can be used for a wide category of
physical cases from a unified point of view.
The formulation may be carried out analyti-
cally by non-perturbative methods. Thus this
approach is particularly useful to treat this
kind of problem. Since the stochastic ap-
proach is phenomenological by its nature, it is
desirable to see how this approach is con-
nected with a microscopic one.

In the first of the present series,"” we derived
the equation of motion for a test system cou-
pled to the nearly Gaussian-Markoffian heat
bath from a dynamical point of view using the
influence functional given by Feynman and
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Vernon, and evaluated its resolvent in a con-
tinued fractional expression. The result is
equivalent to the stochastic Gaussian-
Markoffian model except that our result in-
cludes the reaction effects of the bath. In the
second paper,” we derived a non-perturbative
expression for two-time correlation functions
of a system as an extension of ref. 1. We also
pointed out that the higher order interaction
with the environment gives rise to some special
features for two-time correlation functions.
In this paper, we make a formulation of the
second order optical process from the
dynamical point of view equivalent to the
stochastic Gaussian-Markoffian model as an
extension and application of refs. 1 and 2. On
the basis of this, we unify the stochastic and
dynamical approaches. As an example, we
discuss the power spectrum of scattered light
from a three-level system interacting with the
environment in its excited state (intermediate
state interaction) which was studied in detail
in the stochastic approach.’> We also present
numerical analysis of the emission spectrum
and discuss the reaction effects of the bath
which is derived from our dynamical ap-
proach as the modification of the stochastic
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theory. We also notice a mixing of the
coherent and incoherent processes which pro-
duces the broadened Raman process.

This paper is organized in the following
way. In the next section, we derive the for-
mulation of the second order optical process
of a three-level system. In §3 we apply our for-
mulation to the intermediate state interaction
model. Numerical results are also presented to
show the reaction effects of the bath which
were ignored in the previous stochastic
treatments. The last section is devoted to the
summary and conclusion.

§2. Formulation

In order to formulate the problem in a
general way, we introduce the physical spec-
trum proposed by Eberly and Wodkiewicz.®
This spectrum is based on the normalized
counting rate of photodetector including the
effect of filter or interferometer. The setting
frequency and the spectral bandwidth of
Fabry-Perot interferometer are respectively
denoted by w and I';. The emitted light is essen-
tially defined by the oscillating dipole moment
of the system. Then the physical spectrum at
time ¢ is expressed in the form

(w, t):21”f§ dt’S det” exp [—(Ii—iw)(t—1")]

0 0

Xexp [—([i+iw)(t—t")KDS (1) D ("), 2.1

where D¢ (t) represent dipole operators of the atomic system to be observed and we assumed that
the proportionality constant between the emitted light field and the dipole moment is included in
these operators.

The system under observation is composed of the main system A and the heat bath B. We
denote a state of A by coherent states ¢ and ¢* and B by a c-number coordinate X. The variable
X is assumed to have the Gaussian property. Furthermore, the interaction between A and B is
assumed to have H;= V(¢, ¢*)X, where V(¢, ¢*) is an operator of A. As was shown in refs. 1
and 2, we can express such a system in a functional integral form. By performing the integration
over the bath, we find the physical spectrum eq. (2.1) to be

Hw, t)=tr {&(1)},
where the operator &(¢) is defined by

(2.2)

é(t)=§SN_’ dof d¢rS§N_' doi™* dof [¢& (o1, ¢f; 1)< 1, (2.3)

with the element

E(of, i 1)=T (21?S dt’g de” SDtW*(T)‘ﬁ(T)]SDf[qS'*(T)d"(T)]

0 0
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xexp [(i/h)Sa(d*, ¢; DIF(¢*, ¢, ¢'*, ¢'s t)exp [—(i/h)SE(o'*, ¢'; 1)]
x e Im= e m T IDE (7%, 67, 1) De (9, ¢, f”))- (2.4)

In the above,

M

Sa(o*, ¢; t):Al/IiETolo > elihdf (dx—du—1)/e—Ha(dF, dx-1)]

ES dr[ih¢>*(f)d$(r)—HA(d>*(f), qs(r))} (2.5)

is the Schrodinger action of A, DS (¢™*, ¢, t’) are the dipole elements at time ¢’ and

M-—1
SDf[¢*(T)¢)(T)] = lim 11 SN“ doi dox (2.6)
O =1
denotes integration over the measure of the paths of {¢*(r), ¢(r)} over the time interval (0, ¢)
for the fixed initial state ¢(0)=¢, and the final state ¢*(t)=¢{ with the normalization constant
N. The valuables ¢*(¢), ¢(t) etc. represent complex numbers for a Boson system and are
Grassmann numbers for a Fermion system in which case the symbol T takes care of their proper
ordering in time. The effect of the bath is described by the Feynman-Vernon influence funct-
ional”
t

F(o*, ¢, ¢'*, ¢'; t)=exp {(—iA)ZX df'§ dr eV (9%, 0, 0%, 075 T7)
0

0
h
X (Vx(¢*, b, 0", ¢’ r)—i% Voo, ¢, 9", ¢ t))}, 2.7)

where we set

V(o™ ¢, 0%, &5 N=V(®*(1), $(1) = V(e'*(1), ¢'(1)),
Voo™, 0,0, ¢ )=VI(0¥(1), o(1)+ V(e (1), ¢'(2)). (2.8)

To derive this particular form, we assumed that the bath is initially at the inverse temperature
B=1/ksT and shows the Debye relaxation with the damping constant y for an external pulsive ex-
citation. The coupling strength is denoted by the dimensionless constant A.

The Laplace transform of eq. (2.2) can be performed by deriving simultaneous differential
equations of eq. (2.4). The procedure is the same as that was done in ref. 2. For the time-indepen-
dent Hamiltonian H.(¢)= H,, the result is simply given by

Iw, s]= tr {D: ZO[S+F(‘+iCU](De_ Zo[s]p(O))

f
S+2rf

o+ i n!(iﬁ)an: Zols+Ii+iw] (fI (VXZQ[S+Ff+iw])>

X |:De‘ (H (Zn—ﬁ+l[s]@)> ZO[S]:D(O):I} +C~C~1 (29)
p=1
where p(0) represents the initial condition of A and we define
Z.ls1= ‘
o - 2
s+ay—(ih) \HE+ V> (et D)4 PRSI o
sH(a+)y—(>Gh)"'Hf+V* O.

s+(a+2)y—(h) " Hi+
(2.10)



Fig. 1. Energy level scheme of a second order optical
process of a three-level system.

In the above we set

h
O=V"—i ﬁ__)i Ve.
2
The notations X and O for hyper operators

are defined by

(2.11)

F°G=FG+GF,

F*G=FG—GF, (2.12)
for any operators F and G. As was discussed
in ref. 2, the second term of eq. (2.9) represents
the effect of the higher-order of the system-
bath interaction on the correlation functions.

Consider the second order optical process

!

EN(DF, i t')=T (21"f§ dt’S
0

0
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of a three-level system interacting with the
bath. We assume that the main system A is
composed of the three-level system described
by a ground state |4), an intermediate state
| B) and a final state | C), and the interaction
between these states and c-number electric
field. The Hamiltonian of A is given by

where H, is for the three-level system and
Hg(?) is the interaction between the three-level
system and the electric field of radiation. We
assume Hg(?) in the rotating wave approxima-
tion

Hr(t)=ih(D;" e "'+ Di &), (2.14)

where v represents the frequency of incident
field and D;" are the dipole operators of the
three-level system. We assumed that the pro-
portionality constant of this interaction is in-
cluded in these operators. When the interac-
tion Hr(t) is weak, the weight exp [(i/#)S4(Q;
t, 0)] and its conjugate can be expanded by
(i A)"'Hg(¢). By retaining relevant terms cor-
responding to the transition from |A) to |C>
through | B), the physical spectrum of the sec-
ond order optical process can be written as

a’ S dt, S at: | Drocn | Do exp 16/m)5u(0; )

XF(Q, Q/; t) exp [_(l/h)Sék(Ql; t.)] e—(l"f—iw)(t—t’) e—(ﬂ+iw)(t-t”) eiv(t.—tz)

XDJ(Q’(t'))De"(Q(t”))Di”(Q'(tl))Di+(Q(tz))),

where we simply write Q(t) or Q’(r) for
(0*(7), #(1)) or (¢'*(1), ¢’(7)) and Sy(Q; t)
represents the Schrodinger action of the
Hamiltonian H,. In order to perform the

t

&'(of, ¢f; )=T (ZFfS

0 0

(2.15)

Laplace transform of eq. (2.15), we rearrange
the time ordering of this as Fig. 2. Then, for
example, (I) of Fig. 2 can be expressed as the
form

d¢’ S; d¢, Sh de” S; dtng[Q(‘c)] SD[Q’(T)]

xexp [(i/h)So(Qs5 IF(Q, Q'; t) exp [—(i/h) ST (Q"; 1)]
X e—ZF;(t—t')D:(Qr(tf)) e—(F,»+iw)(t'—t,)Di—(Q/(tl))

X e—-([‘r+i(w—v))(t.—t")De— (Q(t ” )) eiv(r”—rz)Di+ (Q(tz))) .

(2.16)

The Laplace transformation of elements (I), (II) and (III) are calculated from the Laplace
transformation of functions ¢t—¢’, ¢’ —t;, etc. of integrand. Each Laplace transform can be
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Fig. 2.
2.17)

evaluated in parallel to eq. (2.9). The final result is given in the operator form as
low, s|1=L|w, s]+1i[w, s]+ 1w, s]+c.c.,

SY(CBIR,;[s+T+iw] ICB)

where
Ii[w, s]=1{CID; | BYXB| D/ |A>|2;—2"n >
X (CA|Ry[s+Ti+i(w—v)]|CAY(BA | Ru[s—iv]| BAY(AA| R, [s]1AA), (2.18)
Z<<CB‘le[s+Ff+iw]|CB>><(BBIR,-k[s]|BB>>
(2.19)

2r

Lilw, s]= DI IBYXBID |1 A>|?
|1[CU S] |<C| | >< >| S+2Ff <

X{ABIR[s+iv]IABY{AAIR,; [s]IAA),

2r
2

and
= - R 2
I]]][C(),S] |<C|De |B><B|D, ’A>| S+2Ffjk[
X{BAIR[s—iv]IBAY{AAIR,; [s]IAA). (2.20)
2.21)

In the above we denote the density elements in the hyper-operator form as
|ABY=|AX{BI,

(ABIp(t)=<Alpt)|B>,
then the initial condition is written as p(0)=|AA). The elements R;[s] are defined by using eq.
k—1
} Z,-1ls] { 11 (VXZﬁ[S])}},
B=q

(2.10) as
min (j, k) ) v R (J-—l)! j—1
Rulsl= 2 {(—IA)“"'“" | I (Zj-arq-11510)
g=1 (g—D!'[ =g
(2.22)
where min (/, k) takes smaller value of j or & and we set
k' k'
[ (Zi-wrqglstiw]O)=T] (V*Zs[sD=1. (for k’'<q) (2.23)
p=q
(2.24)

a=q
By using eq. (2.17), the continuous wave (CW) response spectrum is given by
I(w)=l‘ir¥)1 sl{w, s].

§3.

Intermediate States Interaction
The interaction of the system with the bath when it is the intermediate states is called an in-
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termediate state interaction. We are concerned with the question how the quantum coherence is
affected by the bath interaction and how it is manifested in optical response. This subject has
been extensively studied from the stochastic approach.’”> Here we discuss this by using the for-
malism of §2 derived from the dynamical point of view.

We write the Hamiltonian of the three-level system as the form

Ho=h(wisl AXXAl+wpl B)YXBl+wcl CHXC). 3.1
The intermediate state interaction is expressed by
V=1B){BI. (3.2)

We further assumed that the natural radiation damping of the intermediate state is given by a
phenomenological damping constant p, for the state | B>. Then, from eqgs. (2.17)-(2.20), we can
evaluate the emission spectrum for the CW response, which is equivalent to the stochastic re-
sult>* except for including the spectral bandwidth of interferometer I'; and the reaction effects of
the bath with the factor 4. Corresponding to eq. (2.9), we may divide this result into two terms as

lw)y=1+1, 3.3)
where
IO=I<CID§|B><BID;+|A>|2[2-Re <So+[ﬂ+yb+iwz] ; So_[yb-iw,])
I'i—1(w—w,)
1
+2'Re(SJ[Fr+yb+iwz])y—Re(So_[yb—iwll)}, (3.4)
b ,

and
1

11:|<CtD;lB><B|Di+|A>|2{2i {mmy(ﬂ [rf+y,,+iw2])r+ny_i(w o
— f 1~ 2

Re
X(—d40—14)" (H Sy lys—iwi] )} i i {(iA)” <ﬁ S:[Ff+yb+iwz]>}

n+m n
X (—204)"(n+m)! (1 njy+2yb {(—Ad—iz])" (ﬁl:[o S;?[%—ian])”. (3.5
In the above, S)[s] are defined by
SZ[s]= ‘ , (3.6)
stay+ (a+1)A2(lii52) .
s+(a+1)y+(a+2)A (1xi0)
st+(a+2)y+---
and we set
w =v+wi—ws, 3.7
wr=wtwec—ws, (3.8)
o=pBhy/2. 3.9

The main difference between our formalism and the stochastic one is that now we take into ac-
count the reaction effects of the bath with factor J. The resolvent S; [s] is equivalent to Z,[s] of
eq. (2.10), thereby, eq. (3.4) may be identified with the first term of eq. (2.9), whereas eq. (3.5)
the second. Then the effects of the higher-order interaction between the system and the bath cor-
responds to eq. (3.5). In the following, we discuss how the reaction effects of the bath changes
the previous stochastic results of ref. 3 and how higher-order interaction between the system and
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the bath affects in the emission spectrum.

(Vol. 58,

First we discuss the reaction effects of the bath. Hereafter we put {CID; |B)=<{B|D;' |A>=1
for simplicity. Equation (3.3) with egs. (3.4) and (3.5) contain the coherent and incoherent pro-
cesses. By putting /=0, a part of eq. (3.4) corresponds to the coherent process becomes the

delta-function form as

2n-0(wr—w2) - 1Sq [ys—iwi]l?

(3.10)

This is called as the pure Raman component. The amplitude of this becomes the Lorentzian in
the motional narrowing limit y > y,, w,, 4 with A4*/y—y’"

1

271"5(601_0)2)
where
"(1—1iBhy/2
y= 7'( .ﬁ y/2) ’ 3.12)
—2iBhy’ /2
—3iBhy’ /2
4 Bhy’/

In contrast, the amplitude of eq. (3.10)
becomes the Gaussian like form in the slow
modulation limit y <« w,

2
2715 (w1—w2) — exp [(yi—w?})/ A%

AZ
| Brfc [(yo—iw)/ V24113,

where Erfc [ ] is the error function. In this
case, the reaction effects of the bath disap-
pear.

Equation (3.5) and a remaining term of eq.
(3.4) correspond to the incoherent process.
For a finite value of y, there is no transparent

(3.13)

Y»+Re ()

{ys+Re (M} +{w—Im (n)}*’

Re (77)

(3.11)

expression available for the incoherent compo-
nent, but numerical calculation can be made.
Figure 3 shows the emission spectra of the in-
coherent component for different values of y
fixing the other parameters as 77=1.0x 107¢,
7»=1.0, A=3.0 and w,=10. In each figures,
the solid line and the dashed line, respectively,
denote the spectrum for AB8=0.02 and
hB=0.0. Then the dashed lines of #8=0.0 cor-
respond to the previous stochastic results. In
Fig. 3(a) of fast modulation, the Lorentzian
like peak of the luminescence appears about at
the atomic resonant position. The reaction
effects of the bath shifts the luminescence peak
to the lower frequencies. This can be seen
from the analytical expression of the
luminescence in the motional narrowing limit
which has discussed in eq. (3.11). In this limit,
the luminescence component can be expressed
in the Lorentzian form as

Yo+ Re ()

2 .
{yo+Re (M} +{w>—Im (1)} ys(y»+Re (1)) {y»+Re (n)}*+ {w,—1Im ()}

The real part of # works upon eq. (3.14) as the
damping, whereas the imaginary part the fre-
quency shift. Thereby, the reaction effects of
the bath with terms J in eq. (3.12) induce the
frequency shift of the luminescence peak. In
Fig. 3(b), the incoherent element is seen to
have peaks not only at the luminescence posi-
tion about w, =0 but also at the Raman posi-
tion w,=10. This peak comes from the factor
1/{l+ny—i(w,—wy)} of eq. (3.5) and is
called as the broadened Raman peak which
was discussed in the stochastic approach.’>
The position of the luminescence is shifted by

(3.14)

the reaction effect of the bath, but the broad-
ened Raman peak is not changed. In Fig. 3(c),
the broadened Raman becomes larger whereas
the luminescence becomes smaller. In Fig. 3(d),
the luminescence peak is unnoticeable and the
broadened Raman peak in a Lorentzian form
with the width about y seen at the Raman posi-
tion. The reaction effects of the bath do not
play any important role and difference of two
lines is unnoticeable. In the static limit of
y—0, the broadened Raman components can
be analytically evaluated in the delta-function
form as
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Fig. 3. Emission spectra of a three-level system, respectively, for (a) y=10, (b) y=3.0, (c) y=1.0and (d) y=0.3.
The solid lines and the dashed lines are calculated from eq. (3.3) but the later is neglecting the reaction effects
of the bath. The arrows indicate the position of the incident frequency w,. The d-shaped pure coherent com-

ponents are not shown here.

o0 n 2
2n-d(wi—wz) 2, ntA” | T Ss [ys—iwi]| .
n=1 =0

(3.195)

In this case, we can not distinguish this
elements from the pure Raman component eq.
(3.10) from its shape and, in this sense, we

may say that the broadened Raman element
has a mixed character of coherent and in-
coherent processes.

Next we discuss the effects of the higher-
order interaction with the bath on the power
spectrum. Figure 4 shows the components I,
of eq. (3.4) and I, of eq. (3.5) with parameter
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Fig. 4. The components [, and I, of emission spec-
trum for y=1.0. The solid line is /, and the dashed is
I,. The pure Raman component is not shown here
and the total emission spectrum is give in Fig. 3(c).

y=1.0. The parameters are chosen in the same
as solid line of Fig. 3(b) thereby the total spec-
trum of Fig. 4 agree with this. As seen in this
figure, the component 7, not only presents the
broadened Raman peak but also partially
cancels the luminescence peak of ;. This
cancellation is particularly important for the
strong interaction case. Figure 5 is same as
Fig. 4, except that y=0.3. In this case, the
negative contribution of /; about at the reso-
nant position is almost equal to the
luminescence element of I, and the total spec-
trum which is shown in Fig. 3(d) only shows
the broadened Raman peak.

§4. Summary

We have formulated the second order op-
tical process on the basis of the physical spec-
trum using the functional integral method. As
an application, the CW emission spectrum of
the three-level system with the intermediate
state interaction is calculated including the
reaction effects of the bath. It was shown that
the position and the line shape of the
luminescence peak is modified by the reaction
effects of the bath compared with the result

Tiiizizae

-
o
T

Emission Intensity
(e») o
o o1
1

|
()
(63}
T

1

Il A |
-5.0 0.0 5.0 A

15.0
Emission Freq. wp

Fig. 5. Same as Fig. 4 except y=0.3. The total emis-
sion spectrum is given in Fig. 3(d).

calculated from the stochastic approach,
whereas the peak of the coherent and in-
coherent mixing process called as the broad-
ened Raman peak is not affected by this effect.

We have also discussed the effects of the
higher-order interaction with the bath which
has been neglected in the master equation ap-
proach. We have shown that the higher-order
interaction between the system and the bath
causes the broadened Raman peak and the
negative contribution of the luminescence.
These effects become important particular for
the strong interaction case.

We limited ourselves here to CW response
of the second order optical process. Extension
of the analysis to the cases of the higher order
optical process is interesting. The research of
the time dependent spectrum of the pulsive
excitation is also necessary to discuss the
coherent and incoherent component more
detail. We will discuss the detail in the for-
thcoming papers.
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