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Abstract. We calculated the 3rd-, 5th-, and 7th-order Raman signals for an Iodine dimer in the

condensed phase, which was modeled by a Morse potential coupled to a heat bath. It is shown

that the 5th- and 7th-order signals are very sensitive to the anharmonicity of the potential and

useful to study intramolecular vibrational modes. In the case of harmonic vibrational modes, the

5th- and 7th-order signals are the function of both the linear and nonlinear linear coordinate

dependence of the polarizability, whereas the present case they are the function of the linear

coordinate dependence of the polarizability. Thus, the signals in the present case are expected to

be much stronger than in the harmonic case. We also showed that the 7th-order 2D signal for a

harmonic system with a nonlinear system-bath interaction, which is a possible model of an

inhomogeneously distributed molecular-vibrational system, depends in the lowest order on the

nonlinear coordinate dependence of the polarizability and is useful to see the effects of the

inhomogeneity, in cases where the 5th-order 2D signals were very weak.

I. INTRODUCTION

The delineation of the vibrational line shapes of molecules in condensed phases has

been the subject of numerous experimental and theoretical studies. Although models

of a solvent’s vibrational and orientational dynamics can be tested against infrared and

Raman studies, there are still ambiguities. For example, one usually assigned the

spectral density obtained from experiments to the spectral distribution of the harmonic

oscillators modes, but this may not be true for orientational dynamics because of the

anharmonicity of a potential. In order to confirm the validity of models, one needs to

have experiments to compare the difference. The fifth-order two-dimensional

vibrational spectroscopy (5th-order 2D Raman spectroscopy) is such an example (1).
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It was proposed to experimentally separate the inhomogeneous distribution of slowly

varying parameters, for example of local liquid configurations, from the total spectral

density. This experiment uses two pairs of excitation pulses, followed by a probe

pulse and therefore has two time variables. By plotting the fifth-order signal as

function of these delay times, we obtain the two-dimensional profile of the signal.

Although the 2D Raman experiment was proposed to study inhomogeneity, the same

technique can be used to access various dynamical information of molecules in

condensed phases, such as the anharmonicity of potentials (2, 3) and the coupling

mechanism between different vibrational modes (4, 5). In this paper, we present the

5th and 7th order 2D Raman spectra of the intravibrational mode of an Iodine dimer in

the condensed phase, which is modeled by a Morse potential coupled to a heat bath.

We focus in particular on the sensitivity of the 5th and 7th order 2D Raman response to

the potential surface and the system-bath coupling strength. It is shown that the

signals from the intravibronic anharmonic modes may be much stronger than the

harmonic modes. For anharmonic potential, the leading contribution to the 5th- and

7th-order 2D Raman signals depends on the linear coordinate dependence of the

polarizability, whereas those from harmonic potentials are nonlinear. The 7th-order 2D

Raman signal from a harmonic system with a nonlinear system-bath interaction, which

is a possible model of an inhomogeneously distributed molecular-vibrational system, is

also discussed. It is shown that such signal exhibits Raman echo like peaks in the

stochastic overdamped case.

II. THE SYSTEM AND CORRELATION FUNCTIONS

We employed a system-bath Hamiltonian expressed as
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where P and Q are the primary nuclear momentum and coordinate, pn and xn are the

momenta and coordinates of the bath oscillators with the frequency ωn and the mass mn,

respectively. In Sec. II and III, we consider a linear-linear system-bath interaction, i.e.

Fn(Q)=cnQ with a coupling strength cn. A quadratic case, Fn(Q)=cnQ
2, which can be

interpreted as a half-breed of the Brownian and stochastic models, will be discussed in

Sec. IV to connect the 7th-order 2D Raman theory to the Raman echo one. The

character of the bath is determined by the spectral density J(ω). Here, we assume
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The molecular system is interacting with an off-resonant laser field, E(r, t), where r is

the position of the molecular system. We consider the 3rd-, 5th- and 7th-order

off-resonant experiments. The system first interacts with N pairs of pulses for the

2N+1th order optical process, which have the same time profile Ej(t) (N≥j), but different

wave vectors kj and kj' for the jth pair of pulse, respectively. The last pulse kT is the

probe that generates the signal (1). The effective Hamiltonian including laser

interaction is then given by Heff=H-E2(r, t)α(Q), where α(Q) is the coordinate dependent

polarizability. We consider the laser pulses in the following three cases:
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Note that the pulse configuration for the 7th-order case (III) is the same as the Raman

echo experiment (6,7), however, the model in this section does not show echo peaks

because the nature of the present Brownian motion model is very different from the

stochastic model which was used to derive the Raman echo theory (6). Here, we use

such signal for 2D analysis. The signal for the above three cases are, respectively,

expressed by the response function
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as I(2N+1)(τ1,…, τN) =|R(2N+1) (τN,…, τ1)|
2. The polarizability is assumed to be

In Sec. III, we consider the cases of (1) the harmonic potential and (2) the Morse

potential:
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where Ec and a are the dissociation energy and the curvature of the potential,

respectively. For a harmonic case, the signals are calculated analytically as
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where we have introduced the anti-correlation function of the Brownian oscillator

[ ] )8(.
4

sin
2

exp
4/

),()("
2

2
022

0

0














−







 −
−

=≡ τγωτζ
γω

ωττ QQC

As can be seen from the prefactors of Eq.(7), the 5th and 7th-order signals arise from

the correlation functions in even order of Q, such as α1
2
α2<[[Q2(t’), Q(t)], Q]> in the

fifth-order. This is because the lowest order correlation, such as α1
3<[[Q(t’), Q(t)],

Q]> will be vanished due to the fact that <[Q(t’), Q(t)]> becomes c-number. This is

one reason that the Brownian oscillator model does not exhibit Raman echo like peaks

in the 7th-order, as we will discuss in Sec. IV. Here, we use the 7th-order signal not

for echo experiment but for two-dimensional analysis.

III. HIGHER-ORDER RAMAN SIGNALS OF HARMONIC AND
MORSE OSCILATOR SYSTEMS

We calculated the signals for a Morse potential using the quantum Fokker-Planck

equation (3, 8). We set Ec=12436 (cm-1), a=1.868 as the ground state of the I2

molecule. The fundamental frequency is then given by ω0=209.8 (cm-1). The

harmonic potential is also set to have the same fundamental frequency. The

polarizability is assumed to be α1=1 and α2=0.01. Since the procedure is parallel to (3),

here we show the results only. Note that the calculations presented in (3) were for Cs2

molecule and were limited to the 3rd and 5th order, but here we calculate the signals for

I2 molecule including the 7th-order. In the following, we use three values of the

system-bath coupling strength (friction) ζ=0.1ω0 (weak), ζ=0.5ω0 (intermediate), and

ζ=ω0 (strong) for the fixed temperature T=300[K].
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The third-order signal

Figure 1 displays the Fourier transform of the 3rd order signal,

for (1) the harmonic potential case and (2) the Morse potential case for a different

coupling strength (a) ζ=0.1ω0, (b) ζ=0.5ω0, and (c) ζ=ω0. For a weak damping (a) and

(b), the peaks in the Morse potential case slightly shift to red because, the energy

between adjacent levels decreases with increasing quantum number and, at this

temperatures, many levels become populated, showing up in a smaller effective

frequency. Such shifts become smaller for an overdamped case (c), because of the

lack of the coherent oscillation. In any case, however, the differences between the

harmonic and Morse potential are very small and are impossible to distinguish.

FIGURE 1. The third-order Raman signals for (1) the harmonic case and (2) the Morse case for

different coupling strength (a) ζ=0.1ω0, (b) ζ=0.5ω0, and (c) ζ=ω0. Two cases are almost identical beside

small peak shift.
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The fifth-order signal

Next, we present the fifth-order off-resonant 2D signals, I(5)(τ1, τ2)=|R(5)(τ2, τ1)|
2, for

different coupling strength (a) ζ=0.1ω0, (b) ζ=0.5ω0, and (c) ζ=ω0. Figures 2(1a)-(1c)

are the 2D signals for the harmonic potential. As was discussed in (2), the decay rate

of peaks in τ1 direction is -ζ, whereas in the τ2 direction consists of three components

with the decay rates -ζ, -2ζ, and -3/2ζ, respectively. Thus, the decay in the τ2 direction

is faster than τ1 direction. Figures 2(2a)-(2c) are for the Morse potential. As was

mentioned in Sec. II, the dominant contribution of the signal in the Morse case is the

lowest order term, α1
3<[[Q(τ1+τ2), Q(τ1)], Q]>, whereas α1

2
α2<[[Q2(τ1+τ2), Q(τ1)], Q]>,

etc. in the harmonic case. Thereby the profile of the signal is very different from that

of the harmonic case even in the overdamped cases (see (1c) and (2c)), which was

impossible to distinguish from the 3rd-order experiments.

FIGURE 2. The fifth-order 2D Raman signal for (1) the harmonic potential and (2) the Morse potential

for different coupling strength. The differences between the harmonic and Morse cases are now clear.
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The seventh-order signal

Now we present the seventh-order 2D signal, I(7)(τ1, τ2)=|R(7)(τ2, 0, τ1)|
2. Like in the

fifth-order case, the leading contribution of a signal for the Morse potential is

α1
4<[[Q(τ1+τ2), Q2(τ1)], Q]>, whereas α1

2
α2

2<[[Q2(τ1+τ2), Q2(τ1)], Q2]> for the harmonic

one. Thus, the time-dependence of signal is very different for these two cases. It was

shown that the 5th-order experiment is useful to detect 3rd-order anharmonicity,

whereas the 7th-order experiment is sensitive to the 4th-order one (2). This indicates

that, by convening the results of different order of experiments, we can reconstruct the

molecular potential in the condensed phase. Since the perturbation of a Brownian heat

bath does not modulate the energy levels of potential, here we do not observe Raman

echo signal in τ1=τ2 direction. In the next section, we will introduce a model to discuss

a relation between the present theory and Raman echo theory.

FIGURE 3. The 7th-order 2D Raman signal for (1) the harmonic potential and (2) the Morse potential

for different coupling strength.
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IV. THE SEVENTH-ORDER SIGNAL OF FREQUENCY
MODULATION MODEL

As was discussed above, we cannot observe an echo like signal from a Brownian

oscillator, since the stochastic perturbation of vibrational levels is essential to have the

echo, but the system-bath interaction of the Brownian model does not produces level

fluctuation but friction on the system. Indeed, one never observed the Raman echo

signal for the intermolecular vibrational modes, where the Brownian oscillator model is

well adapted. On the other hand, for intramolecular vibrational modes, where the

energy differences between the vibrational levels are much larger than that of

intermolecular case, Berg et al have observed Raman echo signals (7). This indicates

that for such a system, one can apply the stochastic model rather than the Brownian

model. Since the Brownian model is also well used in the intravibrational case, one

has to investigate the relation between the two models. For such purpose, here we

introduce the Brownian model with linear-square system-bath interaction, which is

defined by Fn(Q)=cnQ
2 in the Hamiltonian Eq.(1) (Refs. (9-11)). Since the

system-bath interaction, Q2
Σcnxn, is expressed in terms of the creation and annihilation

operators of the system, a and a+ as (a+a+)(a+a+)Σcnxn, this interaction causes a level

fluctuation due to the terms proportional to aa+ and a a+a. Indeed, the interaction

(aa++a+a)Σcnxn for a two-level system is nothing but the interaction to derive Kubo’s

stochastic Liouville equation (12). A stochastic Markovian fluctuation corresponds to

the spectral density in the following form (8, 12)
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The equation of motion for the above spectral distribution with linear-square

system-bath interaction can be obtained in the hierarchy form. Then, by solving the

equation of motion, we can calculate the 3rd-, 5th- and 7th-order signals (11). Figure

4 presents the 7th-order 2D signal, I(7)(τ1, τ2)=|R(7)(τ2, 0, τ1)|
2, for the I2 potential used in

Section III. Here, we considered the stochastic overdamped case, which had been used

to take into account inhomogeneous distribution of vibrational levels (6), and chose the

heat bath parameters as (a) ζ’=0.1ω0 (b) ζ’=0.5ω0, and (c) ζ’=ω0 for fixed noise

correlation, γ=0.1ω0. In this calculation, we assumed the nonlinear polarizability α2 to

be zero and the entire signal is therefore from α1
4<[[Q(τ1+τ2), Q2(τ1)], Q]>. This signal

has the same form as the Raman echo case (6), and we can expect it to be stronger than

that of harmonic case, in which the leading order of the signal is α1
2
α2

2. As can be
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seen in Fig. 3, echo like peaks arise along the line τ1=τ2 with time period about

1/2ω0=80 (fs). This period becomes shorter for larger ζ’, since the effective frequency of

potential becomes larger for large frequency modulation. We also observe many peaks

corresponding to the two-quantum energy transfer from the system to the bath, which is

described by the coupling terms proportional to a2 and [a+]2 (10). Detailed analysis for

Cs2 molecular for different temperatures and coupling strengths will be presented in

Refs. (10) and (11).

FIGURE 4. The 7th-order 2D Raman signal for a harmonic system with nonlinear system-bath

interaction for different system-bath coupling (a) ζ’=0.1ω0 (b), ζ’=0.5ω0, and (c) ζ’=ω0. The inverse

correlation time of noise is set to γ=0.1ω0. Compared with FIG. 3, Raman echo like peaks along the line

τ1=τ2 are prominent.
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V. CONCLUSION

In this paper, we presented the 3rd–, 5th- and 7th-order 2D signals for the harmonic

potential and the Morse potential cases for different coupling strengths. We show that,

in contrast to the third-order experiments, the 2D signals in 5th- and 7th-order are very

sensitive to the shape of the potential. The calculated signals are proportional to the

linear polarizability and are expected to be stronger than the harmonic intermolecular

vibrational cases. We also calculated the 7th-order 2D signals for Brownian oscillator

system with nonlinear system-bath interaction. It was shown that the 7th-order signal

in such model has Raman echo like peaks in the overdamped case. Thus, the nonlinear

system-bath interaction model can be regarded as a bridge model between a stochastic

two-level and Brownian oscillator models.
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