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Femtosecond nonlinear optical spectroscopies provide a powertul tool for
studying electronic and vibrational dynamics, including nonadiabatic curve crossing
and electron transfer processes. In this paper we outline a procedure tor incorporating
microscopically effects of electronic dephasing in coherent spectroscopies involving
strong fields. The approach applies to coherent Raman measurements as well as any
other four wave mixing including pump-probe spectroscopy. It i1s based on equations
of motion for phase space wavepackets, and provides a simple semiclassical picture

for these processes.
We consider a molecular system with electronic states denoted [j>. The

Hamiltonian of the system 1s

. P? . o
H (1) Ty +},: i>U (R; H<jl, (1)

Here, R is a nuclear coordinate strongly coupled to the electronic state and P 1s its

conjugate momentum. The potential of j'th state is denoted by U;; which may depend
on time. The system interacts with optical tield and the total Hamiltonian 1s

H (1) =H (1 {Aj .;_(Ep(r, N+E,(r, ) (R)><K | (2)
IR

where E.(r, t) 1s a strong field that can represent a sequence of pulses with an
arbitrary time profile and E,(r, t) 1s a weak field hereby denoted the "probe”. In the
following calculations the optical signal will be calculated to lowest order in E (r, t)
but to arbitrary order in E,(r, t). The transition dipole matrix element between the
J and k states which may depend on R (non-Condon eftects) 1s given by p,(R).
Optical measurements can be calculated from the polarization

P(r, y=tdu(R)p (r, )} , (3)

where p(R)=2p, (R)j><kl and p(r, 1) 1s the total density matrix. We next expand the
polarization 1In momentum (k) space

P(r,t)=)  cxplik,r-iQ 1Pk 1) . (4)
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Optical measurements are most commonly carried out using one of the following two
detection schemes. First, in homodyne detection one simply measure the outgoing
field in a specitied direction k;

() Sk, n=IPGk, D ‘ (5)

Second, in the heterodyne detection mode, the outgoing field i1s mixed with a
reference field denoted the local oscillator E, ,, and the signal is given by

(if) Sk, y=Im[E(k,, )P(k,, D] . D (6)

Example of (i) are four wave mixing and coherent Raman which 1s observed 1n the
k.=2k,-k, direction, whereas pump-probe experiment with k=k,-k,+k, corresponds to

heterodyne detection.
Let us recast the Hamiltonian 1n the ftorm,

- Y B U U R Dk _ (7)
Pk - . .

H,(1)=—

where we set U (R, D)=ty (R)(Ep(r, t)+EAr, t)). The multi-state density matrix in the
nuclear phase space (The Wigner representation) 1s expanded as

p(1) =Y l>W, (P, Ry <kl . * _ (8)
j.k |

The Wigner representation has the following advantages; first it allows us to compare
the quantum density matrix directly with its classical counterpart. Second, using
phase space distribution functions, we can further easily impose the necessary
boundary conditions (e. g. periodic or open boundary conditions), where particles can
move in and out of the system. This 1s much more ditficult in the coordinate
representation. _

' The quantum equation of motion for the density matrix of the system
interacting with heat bath i1s known as the quantum Fokker-Planck equation [1]. We
have generalize it to a multi-state system with anharmonic potentials and coordinate-

dependent nonadiabatic coupling.

0 P d 0 M o
—W(P,R, t)y=- W (PR, )+(—|P+——— W (P, R; 1
ot g ) M IR il )+ oP ( B oP }w"( )
N l dP/ D/ : / : (9)
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Here, C is the friction constant and



PLENARY LECTURE 5 " 25

X (P,R; 1) =i f “drexpliPrn) U (R-r/2;1) |
(10)

X (P, R; 1) =i f “dr expliPrim) U (R+r2;1)

J]

This equation of motion 1s valid only when the tollowing high temperature condition
applies;

Bho <, (11)

where . i1s a characteristic frequency of the system and P=1/kgT is the inverse
temperature of the environment (bath). This limitation can be relaxed, 1t we consider
a Gaussian-Markovian bath with a finite correlation time [2, 3].

There are several possible strategies for computing the optical signal.
The first 1s based on a perturbative expansion of the density matrix in the entire
electromagnetic field E,+E,. In this procedure the signal 1s expresses 1n terms of
multitime correlation functions of the dipole operator, which constitute the nonlinear
response functions [4]. This procedure 1s particularly useful tor weak tields and it
has been applied to a wide range of experiments such as the pump-probe or coherent
Raman spectroscopy. The second method involves a direct integration of the
equations of motion with all fields present. The third approach 1s intermediate
between the two. We assume weak probe and expand the density matrix to linear
order in £,. We then get

P(r,t) = r.%{[;dt <[p0(t‘), u’(T )]pw>ET(r CT) (12)
where,
* P”(I)Eexp{%ﬁ{d‘ch?(‘c)}p(R)eXp{—_%£rcl‘cH,?(‘c)} , (13)

and H,"(r) is the Hamiltonian without the probe field (Eq.(2) with E(r, 1)=0) and p,,,
is the equilibrium density matrix.

_ A technical ditficulty with this calculation 1s the necessity to select the
polarization with the given wavevector. Formally atoms located in the ditterent
- posttions will see the optical fields with different phases (cos(wt-Ar)). For
non-interacting atoms, the integration over r i1s equivalent to solving the problem
repeatedly tor various phases of the hields and then averaging over the phases,
thereby selecting the deswred wavevector component. This procedure 1s
computationally intensive but in some cases it may be possible to avoid 1t by a
suttable transtormation [5].
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Fig. | Pump-probe spectrum of a two-level system subjected to a strong
excitation for different pulse delays T[ps] and probe dispersed
frequency Aw,. The nuclear degree of the freedom R 1s modelled
as an underdamped Brownian oscillator with the following
parameters: frequency ®,=500[cm™'] and friction y=30[cm™']. Its
equilibrium position 1s linearly displaced between the two-
electronic states with the dimensionless displacement D=1, and
the temperature 7=200[K]. We assumed that both the pump and
probe pulses are Gaussian E,()=Eexp[-(t/t,)’] and
E,()=E.exp{-[(+-T)/t,)*} with resonance central frequencies, i.e.
(2=0Q,=0,, where ©, is the electronic transition frequency of the
two-level system. The pulse durations were taken to be
T,=700[fs] and 1,=30[fs] and the time delay was varied between
T=-2[ps] to 7=0.5[ps]. The trace above the T axis shows the
pump envelope. The dynamical Stark effect shows up when the
pump and the probe overlap 1n time [5].
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