Y. Tanimura and S Mukamel

Nuclear Dynamics of Liquids; possible probe by 2D femtosecond
off-resonant spectroscopy

Abstract

The nonlinear nuclear optical response of liquids subjected to a series of N off-
resonant femtosecond laser pulses 1s calculated using the N’th order non-Con-
don response function for a multimode Brownian oscillator model This multi-
dimensional spectroscopy can be used to unveil the homogeneous or the
inhomogeneous nature of the spectral density observed in impulsive Raman and
birefringence measurements

Introduction

Nuclear motions in liquids take place over a broad range of time scales It 1s
therefore not clear whether spectral lineshapes can be classified as either homo-
geneous or inhomogeneous Even when such classification 1s possible by virtue
of separation of timescales, 1t 1s not easy to firmly establish 1t experimentally
Early picosecond coherent Raman measurements were assumed to have the
capacity of selectively eliminating inhomogeneous vibrational dephasing and
revealing the homogeneous component [Kaiser and Laubereau (1978), Zinth,
et al (1981), Oxtoby (1979), George et al, (1984)]

Loring and Mukamel (1985) have formulated the problem using a multitime
correlation function approach and proved that this electronically off-resonant
Raman technique, which contains only a single time variable 1s equivalent to
linear absorption and 1s thus non selective in principle They pointed out that
only multitime techniques such as the Raman echo can address this 1ssue
Several experiments have been subsequently carried out 1n order to measure the
homogeneous vibrational linewidth [Vanden Bout, Muller, and Berg (1993),
Muller, Wynne, and van Voorst (1988)] These experiments were conducted on
1isolated intramolecular high frequency vibrations In these applications the light
pulses were longer than the vibrational periods As such they did not have the
time resolution to observe directly the vibrational motions The decay of the
signal with the delay between the excitation and the probe pulses then reflects
vibrational dephasing

Recent development of femtosecond techniques made 1t possible to probe



intermolecular vibrations 1n the frequency range 0-700[cm ~'] using an impul-
sive excitation with pulses short compared with the vibrational pertods Under
these conditions the time resolved signal can show the coherent vibrations as
well as their dephasing It 1s tempting to analyze the spectral densities obtainec
[Nelson, et al (1985-1990), McMorrow, et al (1987, 1988, 1991), Cho, et al
(1993b)] 1n terms of instantaneous normal mode analysis of iquids [Keyes
(1984), Chen and Stratt (1991)] However, since impulsive birefringence and
stimulant Raman techniques have only a single time varable, the limitations o
the picosecond Raman measurements apply here as well, the homogeneous anc
the inhomogeneous nature of nuclear motions cannot be addressed

In this article we present a closed form expression for the nuclear response
function to third and fifth order 1n the field, using a harmonic model for nuclea:
motions with a nonlinear coupling to the radiation field (1e through the non-
linear dependence of the polarizability on nuclear coordinates)

This multimode Brownian oscillator model provides a convenient means for
incorporating nuclear degrees of freedom 1n optical response functions We have
recently used a path itegral approach to develop exact closed expressions for
the nuclear wavepackets 1n phase space and for the nonlinear response functions
for this model, including a coordinate dependent dipole interaction (non-Con-
don dipole interaction) Inhomogeneous broadening 1s mcorporated by assum-
ing a static distribution of the oscillator parameters (Fried and Mukamel, 1993)
As an 1llustration, we analyze the possible application of a 5-pulse (P*’) mea-
surement to a model liquid with a typical optical birefringence spectral density

Off-Resonant Non-Condon Response Functions

We consider off-resonant spectroscopy of liquids 1n which all optical frequencies
and their combinations are far detuned off any electronic excitation

The external field consists of a train of N pairs of simultaneous pulses, fol-
lowed by a final (probe) pulse,

E(r, t)= g: E (r, 1)+ Ez(r, t), (1)
r==1
where
E,(r,t)=E, (1) {exp[1(R2,1 —k,r)]+exp[1(Q7rt—k,r)]} +cc, (2)
and
Ep(r,ty=E (t)exp[u(2+t—k,r)]+cc (3)

Here E (1) denotes the temporal profile of the y'th pulse We assume that the
pulse pairs are well separated in time We further assume that the system 1s 1ni-
tially in thermal equilibrium in the ground electronic state



€ e e e

/ w.,

\t © /
N

Fig 1 The potential surfaces of the ground state and the first excited state for an «’th Brownian
oscillator Shown also in the pulse interaction scheme for a P*®) (N=2) process Two off-resonant
pairs of the pulses labeled 1 and 2 perturb the nuclear motion 1n the ground state The fifth pulse
labeled T then creates the polarization and generates the signal This experiment has two time
intervals and can therefore distinguish between mhomogeneous and homogeneous spectral den-
sities

Off resonant measurements have the following attractive characteristics
(1) Excited state populations are limited by the Heisenberg relation to very short
times 4t = 1/4w, where dw 1s the off-resonant detuning As Aw is increased,
these populations become practically negligible and the measurements probe
only ground state dynamics (1) The time the system spends in an electronic co-
herence 1s also limited by the same Heisenberg relation, and consequently
nuclear dynamics can be neglected during the coherence periods We can then
perform time integrations over these periods and describe the interaction of the
liquid with the laser fields by an effective Hamiltonian

qufz Hg(p’ Q)—a(‘l) E(l',[), (4)

where H,(p, q) 1s the ground state Hamiltonian and «(q) 1s the electronic pola-
rizability that depends parametrically on the nuclear coordinates q (Hellwarths,
1977, Yan and Mukamel, 1991, and Tanimura and Mukamel, 1993) We assume
the following model for the electronic polarizability,

#(q) = exp (gA\aq‘), (5)

where A, 1s the dipole coupling constant for the s’th oscillator The dimension

of A, 1s chosen to be m', therefore, a 1s a dimensionless coupling parameter The
coordinate ¢ dependence of s may arise from the coordinate dependence of the
dipole moment and of the electronic energies



For off resonant excitation, the 2N + 1’th polarization 1s then expressed as

N N
PEN*FU(1)=2V*+1E (1) exp(12 7t — ik ;) {]—[ J dr,E} (t—— D rk>
y=1"0

A=y

x[Z cos (A.Qj (t— ZZ: tk>-—~Akjr)+l]} RC¥*D({z }), (i

where 4k, =k, — k), 42 =Q - Q)
For H,, we assume a multimode Brownian oscillator model

wino- B [ i)

2mk

Here, x3, p;, m;, and wy, are the coordinate, the momentum, the mass and tl
frequency of the k’th bath oscillator for s’th mode, respectively We assumed th:
the optically active vibrations are linearly coupled to a heat bath The heat-bat
system may represent optically mactive vibrational modes, phonons, solvent
modes, etc

We can think of the system 1n terms of a few Brownian oscillators ¢q,, or ar
infinite number of harmonic oscillators (with no damping) The two pictures at
mathematically equivalent. The former may provide a better physical insight
regarding the relevant collective nuclear motions

Expanding 1n powers of a?, the lowest term 1n the third order response func
tion 1s given by

2
RP(e)=2a® [dl S(I) C'(x,, T), (¢
where

C'(1,T) =jdw J(w, ') sin(w?) (S

Here, we itroduce the spectral distribution function

J, M=) n,flo,o,,7,), (1C

where I'= {y,, w,, y,} represents the parameters of the model namely the
strength of the interaction (5,), the frequency (w,), and the relaxation rate (y,
of the s’th mode and

1 wy,
21 (w? — w?)? + wy?

(11



The effect of the heat bath 1s expressed by the spectral distribution, y,(w) will
represents the friction induced by the bath on the s’th oscillator,

> —(—c—ié(w—wi) (12)

© 2my (wi)z

I

7s(w)

In this study we assume a frequency-independent friction y,(w) = y,, which
represents a Gaussian-white noise on the nuclear system The coupling strength
1s given by
hA?
ny=—>=. (13)

mg

This model can be used to represent specific coordinates, whether local (e g
intramolecular) or collective 1n nature Even 1f we do not have a clear idea of
the nature of the modes of the system, 1t can be used as a convenient parameter-
1zation. In the hiquid phase, the distribution of the values of {#,, w,, y,} may
reflect different slowly interconverting local environments Similar problems of
inhomogeneity are of current imterest 1n the studies of dissipative kinetics obser-
ved 1n charge transfer n the photosynthetic reaction center (Walker, etal 1992,
1993)

Consider the following form for the birefringence (Kerr) amplitude

R‘”(r,)z%azdeS(F)fdw J(w, I') sin(wt,), (14)
where

RO(w)= [ dr,e R(x,)

wA,C, wA,C,

- 15
(B =)+ Cl]  m[(Bo— ) + 0~ C] (13)

Here 4,, B,, C,, etc are chosen to represent the experimental birefringence
spectral density of CH,CN of these parameters (in [cm™']) are given by (Cho
etal, 1993b)

A,=001, B, =50, C,=100, A,=004, B,=350, C,=25,  (16)

R® depends on the homogeneous J and inhomogeneous S components only
through the combination

jdrS(r)J(w, r (17)

There are therefore infinite number of choices of inhomogeneous distribution
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Fig 2 The spectral density R*®(w) of CH;CN obtained from the optical Kerr experiment (Chc
et al, 1993)

S(I',) and homogeneous spectral distribution J(w, I';), that gives the same opti-
cal Kerr signal,

I°(T,) = |RO(T )%, (18)

where R®) 1s given by Eq (15) Hereafter we adopt the two extreme choices,
(1) a purely homogeneous two oscillator case, where spectral density 1s
attributed to the two oscillator modes

2
S(Fh r2)= r[ 5('71'—/11) 5(('01——31) 5(?1——Ca{)’ (19:

a=1

J(, Iy, I)) =1 f(o,0,,7) + 0, /(0, 03, 7,) (20,

(1) purely inhomogeneous one oscillator case, where a single harmonic fre-
quency 1s inhomogeniously distributed

S(I')=lm d(n,—1)o(y, +e)[4,f(w,, B, C\)+ A, f(w,, B,, C5)], (21

e—0
Jo, ) =nflw,w,7y) (22)

As can be seen from Eq (14), the third order signal, which corresponds to the
optical Kerr (birefringence) experiments, 1s identical for the two models This 1s
in agreement with our previous analysis to the effect that we cannot distinguish
between homogeneous and inhomogeneous contributions from experiments
based on the third order response function

Let us consider now the fifth order signal The 5°th order off-resonant
response function is given by

4 4
R‘S’(rz,r.)=—,f’7 [drs(ryci,, M) [C(z,, 1)+ C'(x,+72, 1)1, (23)
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Fig 3 The time doman 2D signal I'*)(T,, T,) for the pure homogeneous case (1) using the spec-
tral distribution of Fig 2

or alternatively,
(5) 4 4
R(e;, 1) =734 jdrS(r) jde(w,r)sm(mz)

x {j do J(: T') [sin(wt,) + sin(o(, + rz)]} (24)

For impulsive pump probe experiments, such that E;(t)=6(t— T, —T,),
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Fig 4 The time domain 2D signal 7T, T,) for the pure inhomogeneous case (1) using the
spectral distribution of Fig 2



E|(t)=4(t), and E,(t)=0d(t— T),) for the 5'th order, we can perform the tim
integrations over 7, Then the total signal intensity related the square of the
polarization 1s given by (up to a proportionality constant)

I®(T, Ty) = |RO(T,, T))I? (2

R®) depends on J(w, I') and S(I') separately and not merely through the cor
bination Eq (17) This opens up the possibility of observing the difference
between the homogeneous and the inhomogeneous contributions to the spectr
density obtained from birefringence R®® experiments (Figs 3-6) The two mode
Eq (19) together with Eq (20) or Eq (21) together with Eq (22) have dramai
cally different predictions for R This 1s illustrated mn the following numeric:
calculations For (1) the pure homogeneous and (1) the pure inhomogeneous
cases As seen from the figures, the fifth order (3-pulse) signal 1s very differen:
for the two cases The I'®) signal constitutes a two-dimensional spectroscopy
with a two independent time periods during which the nuclear coherence
evolves

A different perspective on these results can be obtained by performing two-
dimensional (2D) Fourier transformation, as follows,

o0 [ee} 2
I(coz,a),)=“0 ar, [ e e T, 1)) (2

Calculations were made using a two-dimensional fast Fourier transform (FFT
routine on a 256 by 256 grid Figs 7 and 8 show, respectively, the 2D Fourier
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Fig 5 Sections of Fig 3 for different value of T, as indicated (in ps)



transform of (1) the pure homogeneous (Figs 3 and 5) and (1) the pure nhomo-
geneous cases (Figs 4 and 6) In Fig 7, we observe peaks whose positions are
determined by the products [sin(w,T,)+ sin(w, T>)][sin(w,T,) +sin(w, T1)]
and [sin(w,T>) + sin(w, T){sin[w,(T, + T,)]+sm[w,(T, + T,)]}, however,
since their spectral width at (w,, w,) = (%50, + 50) [cm~'] are broad
(y,=100 [cm~']), we cannot distinguish them from the zero frequency peak at
(w,, w,)=(0,0) In the purely homogeneous case, one can observe coherent
modes of the ground states as shown 1n this Figure

Fig 8 represents the pure nhomogeneous case, where we can rewrite the
response function as

RO(T,, T))=[ do, [4,f(®,, B,, C\) + A:f (@, By, C)]
x {cos[w,(T;—T,)]+cos[w,T,]
—cos[w, (T, + T,)] —cos[w, (T, +2T,)]} (27)

Thus, the response function consists of functions of the form (T — T5),
g(T,+T,), (T, + T,) and k(T,) Since we performed the Fourier transforma-
tion over T,, T, >0, the contributions of f(7', — T,) and k(7)) are large com-
pared with the contribution from g(7', + T,) and j(T +27,) and show maxima
along the lines w, = —w, and w, =0 The distribution of the ground state mode
frequency can be observed on these lines as the peaks at (w;, w,)=(+ @,, 0)
and (0,, w,)= + (w,, —w,) The functions g(T, + T,) and j(T, + 2T,) also
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Fig 6 Sections of Fig 4 for different value of 7| as indicated (in ps)
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Fig 7 The frequency domamn 2D signal I1%(w,, w,) corresponding to Figs 3 and §

show small peaks at (w,, ;)= £ (w,, w,) and (v, w,) = + (v,, 2w,), how-
ever, the contribution from w, cannot be distinguished from the central peak
n conclusion, the two models, which have an 1dentical 1D (birefringence)
spectrum clearly show very different 2D spectra Realistic situations of the liquu
spectral density are expected to be intermediate between these purely homo-
geneous and inhomogeneous cases Separately of J(w, I") and S(I",) may thus t

probed by performing higher order measurements in addition to the optical
Kerr experiment

1w, ,)

Fig 8 The frequency domain 2D signal 1w, w,) corresponding to Figs 4 and 6
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