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1. Introduction

Nuclear motions and relaxation play an important role in determining the rates
and outcomes of chemical processes in the condensed phase [1-12]. Electron
transfer, isomerization and bimolecular reactions are directly effected by
intramolecular vibrations as well as solvent motions.

Femtosecond spectroscopy allows the direct probe of elementary nuclear
motions [11, 13]. Much physical insight can be gained by formulating nonlin-
ear spectroscopy in terms of nonlinear response functions which are given as
sums of contributions of Liouville space paths [14]. Each of these paths may
be represented using a nuclear wavepacket in phase space. Comparison of
the wavepackets with the experimental observable allows the development of
a powerful semiclassical representation of nonlinear spectroscopy. The non-
linear response functions obtained from nonlinear spectroscopies can then
be used to calculate other processes including curve crossing and electron
transfer [15, 16, 17].

The multimode Brownian oscillator model provides a convenient means
for incorporating nuclear degrees of freedom in the response function [14].
We have recently used a path integral approach [18] to develop exact
closed expressions for the nuclear wavepackets in phase space and non-
linear response functions for this model [19] (hereafter denoted TM). In this
paper, we apply these results to the analysis of pump-probe spectroscopy. In
Section 2, we introduce the response functions and present expressions for
the wavepackets using the Condon approximation which neglects the varia-
tion of the transition dipole moment with nuclear coordinates. More general
expressions which do not involve the Condon approximation are given in
the Appendix. In Section 3, we apply these results to impulsive pump-probe
spectroscopy and analyze the roles of high frequency (underdamped) modes
as well as overdamped solvation modes.
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2. Phase Space Wavepacket Representation for the Optical Response

We consider a two electronic level system with a ground state |¢ > and an
excited state |e > interacting with an external electromagnetic field E(t);

H, = Hy — E(1)V, @2.1)
where
Hy=lg>H,<g|+]e>H <el, (2.2)

with

2
Hy = QPM‘+U9((1)a )
(2.3)

2
H, = ;)W + Ue(‘])v

and p, ¢, and M represent the momentum, the coordinate and the mass of a
nuclear coordinate, respectively. V' is the dipole operator which is given by

V=g > pnlq) <el+le>p(g) < gl (24)

14(¢q) is the dipole matrix element between the two states which depends on
the nuclear coordinate. The potentials of the excited and the ground states are
assumed to be harmonic:

Ug(q) = %M‘*’ng,
(2.5)

Ue(q) = 3Mwi(q+ D) +hwly,
where wgg is the electronic energy gap and D is the displacement of the
potential. This system is embedded in a solvent, which is modelled as a set of
harmonic oscillators with coordinates x,, and momenta p,,. The interaction
between the system and the n-th oscillator is assumed to be linear with a
coupling strength c,,. The total Hamiltonian is then given by [20, 21]

H=H,+H (2.6)
where
2 2 2
p mMyW Cnq
H/ — n n o . .
4:—: [Zmn T <$” mnwg> } 7

We assume the entire system is initially at equilibrium in the ground electronic
state:

py = |9 >< glexpl—BUH, + H)]/Te{exp[-B(H, + H']},  (2.8)
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where 8 = 1/kpT is the inverse temperature. All effects of the heat bath
on the system are determined by a spectral distribution of coupling strength
defined by

2
Jw)=7%" znf"wn §(w — wp). (2.9)

By introducing a frequency dependent friction, ¥(w) = J(w)/w, the anti-
symmetric and a symmetric equilibrium correlation functions of the nuclear
coordinate are expressed as

X(1) = Halt)g — aal0),
_ wy(w) -
B M/ (.d —w )2+w25/2(w) 81 ( t)a (2.10)
and
S(t) = %<(I(t)Q+(]<](t)>
- w;}/(w) éﬁ‘ﬁ COS(w
= M/ (w2 — w2)? + w232(w) coth< 3 ) (wt).
2.11)

We further introduce the auxiliary function

— ¢2 f ! g //[ " ﬂ //] 212
_g/odt/odt S() % x| 2.12)

where

MDwg ng 2A h
= = dy/ = — ) 2.13
5 h d h d Mw() ( )

Here, we defined the dimensionless nuclear displacement parameter, d =
D+/Muwy/h, and the Stokes shift parameter

MDzw(%_dzwo
/A

The optical response can be expressed in terms of the optical polarization

A (2.14)

P(t) = Tr{(le >< g+ g >< el)/ dp / dqu(q)W(p,q,t)},
’ (2.15)
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where W (p, ¢, t) is a phase space wavepacket which depends on the interac-
tion between the driving field and the system. Denoting the nuclear wavepack-
et to n-th order in the field by W) (p, ¢, t), we have

Pt / dp /dqu W™ (p, q,t), (2.16)
and

Wip,g,t)=>.> W (p,qt), (2.17)

where W(g"’) is the contribution of the a-th path to the n-th order polarization.
Since the equations are simpler in the Condon approximation, u(q) = u,
we first give the expressions for this case. From TM, the first order distribution

function is given by

W (p, q,t) = /0 dt Bt — 1) (A2 (0% o (?)g) 2

1 IO VANC (1), \\2
X eXp [—2<q2>g(q Q1 (t1)> 2<p >g (p Py (tl))
<RV + cc., (2.18)
where
(*)g = §+(0), (pP)g =M d*g, (t)/dt* |i=o,
Weg = Wey + A, (2.19)

and the center of the coordinate and the momentum of distribution function
are given by

¢t = —ic'g_(t), V() = —iMeGo(t). (2.20)

The first order response functions is given by

RV (1) expl@{7 (t1)], (2.21)
where
QP (1) = —iwegts — g-(11). (2.22)

The linear polarization is then expressed by using the response function,
Equation (2.21), as

P4y = *i,u,z/ dt E(t — )R\ () + c.c. (2.23)
0
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For the third order polarization, we need distribution functions for four Liou-
ville space paths [11], eg — ee — eg, ge — ee — eg, ge — gg — eg and
eqg — gg — eg denoted by o =1-4, respectively. The corresponding phase
space wavepackets are then given by

W(S)(p, q, t) = / dt; / dty / dtzE t— t3)E(t — 1y — t';)

where

q§3)(t3,t2,t1)
q§ )(t3,t2,t1)
q§ )(t37t2,t1)
@) (ts, 12, 1)

and

pg;(t%tz,tl)
Py (t3,t2,t1)
By (t3, ta, 1)
( )(t3,t2,t1)

E(t —t1 — ta — ta3)3 (472 (p2) g (g%)g) ™"/

4
£ 3 exp {—2<q1> (0= 0 (ta,t2,1))?

- 2<plz> (p - 85 (13, 12, tl))z]

X Rg)(t% tr,t1) + c.c., (2.24)

a=1

= —if G- (t1 + t2 + t3) — g4 (t2 + t3) — g4 (t3)],

—i& 7 [=g4 (b1 + ta + t3) + §—(t2 + t3) + g4+ (t3)], (2.25)
—if 7 =gy (1 + ta + t3) + gy (f2 + t3) + g (t3)],

= —i& g (ti + a4+ t3) — g—(ta + ta) + g—(t3)],

Il

= —iMET[G_ (b + tr 4+ t3) — Gu (b2 + t3) + G4 (83)],

= —iME =gyt +ta + 1) + G- (t2 + t3) + G4 (83)], (2.26)
= —iMET =gy (t + a4 t3) + G4 (2 + t3) + §—(£3)],

= — i METG-(t) +ta +t3) — G—(ta + t3) + G- (t3)].

The third order response function is now given by

RO (t3,t5, 1) = exp|QP (3, ta, 11)], (2.27)

where

( Q(|4)(t3a t2> tl) =

Qg4)(t37 t23 t]) =

( )(t'%tQ)tl) =

Qy)(tmtz,tl) =

—tweg(t1 +t3) — g—(t1) — g+(t3)

—[9+(t2) — g4 (t2 +t3) — g—(t1 + t2) + g—(t1 + t2 + t3)],
—tWeg(—t1 +t3) — g4 (t ) 9+ (t3)

+[g-(t2) — g—(t2 + t ) = g4 (t1 + t2) + g4 (1 + t2 + t3)], (2.28)
—tweg(—t1 +t3) — g4 (t1) — g—(t3)

+[g+(t2) — 9+(t2+t3) +(t1 +t2) + g+ (t1 + 2 + t3)],
—iweg(t1 + t3) — g—(t1) — g-(t3)

—[g-(t2) — g—(t2 + t3) —g-(ti +t2) + g (t1 + 12+ t3)].
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Then, using the response function Equation (2.27), we have the third-order
polarization in the form,;

4 fo'e) [e)e] o0
P(3)(t) = it Z / dts / dty / Aty E(t — 13)E(t — 12 — t3)
a=] 0 0 0

Et—t -1, — tg)jo)(tj;, tr,t1) + c.c. (2.29)

These quantities are generalized to the non-Condon case [19] and the results
are given in the Appendix.

The Brownian oscillator model provides a picture in terms of wave pack-
ets in phase space which can be calculated semiclassically. Using a classical
Langevin equation, Yan and Mukamel derived closed expressions for the
wavepackets [22]. The equations presented here generalize these results in
two aspects. (1) We use a microscopic description of the bath which pro-
vides a consistent treatment of relaxation and dephasing at all temperatures.
The Langevin equation used earlier is valid at high temperatures. Yan and
Mukamel have shown how the exact expression for the response function can
be obtained from the Langevin equation by further assuming the cumulant
expansion and including the fluctuation dissipation theorem. However, the
expression of the wavepackets was given only in the high temperature limit,
since the semi-classical Langevin equation approach cannot keep track of
the quantum coherence between the system and the noise source (the heat
bath). This coherence is less important at high temperatures due to the fast
dephasing, but becomes dominant at low temperatures. (ii) We allow for an
arbitrary dependence of the transition dipole moment on nuclear coordinates
and thus relax the Condon approximation.

3. Impulsive Pump-Probe Spectroscopy with Non-Condon Dipole
Moment

We assume the variation of the transition dipole with the nuclear coordinate
(non-Condon effects) is given in the form

1(q) = poexp(eq). (3.1

We may calculate the response functions and the phase space distribution
functions for this model by replacing all ¢; in the Appendix by c.

In a pump-probe experiment, the system is first subjected to a short pump
pulse, then after a delay 7, a second probe pulse interacts with the system.
The external electric field is given by

E(t) = Ei(t + 7)exp(—it) + Ef(t + 7)exp(iQt)
+ Ea(t) exp(—i§at) + E5(t) exp(if2,) (3.2)
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where F(t) and E,(t) are the temporal envelopes, and 2| and 2, are the
center frequency of the pump and the probe field, respectively.
The probe absorption spectrum is [14]

S(Q, Qaswr, 7) = =2 Im E[wy] PP w], (3.3)
where
B \/_ / di expli(ws — Q2)1) Ea(t), (3.4)
and
P w,] = L / R expli(wy — Q)] P (1). (3.5)
V21 J-co

We shall assume impulsive pump and probe pulses [23]
Ei(t) = 016(t+7), Ea(t) = 628(1), (3.6)

where 8, and 8, are the pump and pulse areas, respectively. We shall calculate
separately the particle contribution corresponding to the Liouville paths o = 1
(eg — ee — eg) and a = 2 (ge — ee — eg) and the hole contribution

corresponding to the Liouville path & = 3 (ge — gg — eg) and a = 4
(eg — gg — eg). For the impulsive pump case, R@(t, 7,0) = Rg?’)(t, 7,0)
and Rg3)(t, 7,0) = Rz(f)(t, 7,0), and we have

S(wy — Q2) = See(wr — Q23 7) 4 Ggg(wa — Qo T). (3.7
Here, .. and 9, are the contributions of the particle
See(ws — Q) = 2 Re / dt expli(ws — LR (1,7,0),  (3.8)
0
and the hole, given by

Syg(ws — Q) = 2 Re / dt expli(ws — WYRV (L, 7,0),  (3.9)
0

and we set o) = pobr = 1.
We have also calculated the linear absorption spectra defined by

o(w) = /OOO dt R\ (1) exp(iwt) + c.c. (3.10)

Hereafter we assume a frequency independent damping, where y(w) =
~, analytical expressions for the symmetric and antisymmetric correlation
functions are known [21]. The auxiliary function is then given by

g+(t) = ¢'(t) 19" (1), (3.11)



334 YOSHITAKA TANIMURA AND SHAUL MUKAMEL

where
g(t) = A { [E?Tig(e_Aﬂ + Aot — 1) coth <w’;\2>'
2 —u, B
—4_';;’_0 ;::I i(jg +tyj%_)12/”_t 72,1/% } ) (3.12)
and

2 2
7 o —vt/2 7/2—(")0 ; i _
ig"(1) = i {e y ( s+ cos(Ct)) 1t wg} (3.13)

Here, we defined v,, = 27n/h$ and

M= 240 da=2—iC, (=1Jwh-1Y/4 (3.14)

In the following, we present the linear absorption spectrum o(w), the
pump-probe spectrum S(w), and the second order wavepackets W (?)(t). The
second order wavepackets with the Condon and the non-Condon interactions
are obtained from Equations (2.24) and (A11), respectively, by putting t3 = 0,
ta = t, ie. WO (ty,1) = WO(ty,¢,0). For the results of the pump-probe
spectrum and the wavepackets, we separately present the contribution from
the particle and the hole. Calculations are performed for the Condon case
(¢ = 0) and the non-Condon case (¢ = 0.1), and are denoted by a) and b) in
all figures. The frequency and the dimensionless displacement are taken to
be wp = 600 [cm~!], d = 1.0,and 7" = 100 [K].

Figure 1 shows the linear absorption spectra calculated using Equation
(3.10) for different choices of v: 1) the underdamped case, v = 40 [cm™!];
2) the intermediate case v = 400 [cm~!]; and 3) the overdamped case
v = 2000 [cm~!]. The non-Condon spectra are slightly shifted to the blue
compared with the Condon spectra. This shift becomes larger as the temper-
ature is increased. The reason is as follows; prior to the pump excitation, the
system is in the ground equilibrium state and the nuclear wavepacket, which
is well localized if the temperature is low, broadens at high temperatures. As
seen from Equation (3.1) the dipole element x(q) is a linear function of ¢ for
small ¢. The probability of the system to have large nuclear displacements
q increases with temperature, and the non-Condon effect becomes therefore
larger at higher temperatures. Since p(g) becomes larger where the excita-
tion energy between the ground state and the excitation state is high, then it
helps the excitation of the pump and, thus, the spectrum shifts to the blue.
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Fig. 1. Absorption spectrum with Condon dipole interaction (¢ = 0) for: 1) the underdamped

case,y = 40 [cm™!]; 2) the intermediate case v = 400 [cm™!]; and 3) the overdamped case
~ = 2000 [em™!] at different temperatures T = 100 [K]. In a) indicate results with Condon
approximation (¢ = 0), whereas b) without Condon approximation (¢ = 0.1).

These effects become larger in nonlinear experiments such as pump-probe
experiments, since they are higher orders in the dipole interaction.

Figure 2 shows the impulsive pump-probe spectrum for the underdamped
case v = 40 [cm~!]. Here, we define Aw = wy — Qp — Weq. Figure 2ais for
the Condon approximation whereas 2b is for the non-Condon interaction. In
each case, we display separately the contributions of the hole, the particle,
and their sum. In Figures 2a and 2b, the particle spectra are rapidly changing
in both the Condon and the non-Condon cases; however the hole for the
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(a) Condon (b) non-Condon

Fig. 2. The impulsive pump-probe spectrum for the underdamped case v = 40 [em™'] at
the low temperature 7' = 100 [K]. Here, we define Aw = wy — Q2 — wey. Figure 2a is for
the Condon approximation whereas 2b is for the non-Condon interaction. In each of these, we
display separately the contributions of the hole, the particle, and their sum.

Condon case (the bottom of 2a) does not change at all with time. This can be
understood by plotting the time evolution of the wavepacket. Figure 3 shows
the wavepacket corresponding to Figure 2 (the unit of r is \/i/Mwg). We
plotted three wavepackets (the hole, the particle and their sum) as a function
of the coordinate and the time. In this underdamped mode, the particle moves
from the ground state position ¢ = 0 to the equilibrium state ¢ = d = —1
(the bottom of the excited state potential) with a coherent oscillation, both
for the Condon and the non-Condon cases. However, the hole, which in the
Condon case does not change its position and shape, slightly oscillates in the
non-Condon case. This is due to the impulsive pump [23]. Under the Condon
approximation, the impulsive pump pulse creates a particle in the excited state
without changing the Gaussian shape of the wavepacket in the ground-state.
Then, the shape of the hole wavepacket is also Gaussian and cannot move
in the harmonic potential. However, in the non-Condon case, the coordinate
dependent dipole operator affects the shape of the ground equilibrium state.
Figures 4 and 5 show the spectra for the intermediate damping case v =
400 [cm~!]. As seen from the middle of Figures of 5a and 5b, the motion
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(a) Condon (b) non-Condon
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Fig. 3. The time-evolutions of the wavepacket for the underdamped case corresponds to
Figure 2 (the unit of r is \/&/Mwq). We plotted three wavepacket (the hole, the particle and
the total) as the function of the coordinate and the time.

of the particle is critically damped and the particle quickly moves from the
equilibrium position of the ground state (7 = 0) to the bottom of the excited
potential (7 = —1). These motions are clearly reflected to the spectra Figure 4.

Figures 6 and 7 are for the overdamped damping case 7 = 2000 [cm™!].
In this case, the particle motion is strongly suppressed by the heat bath and
particle quickly reaches its equilibrium distribution. Under strong damping,
even though with non-Condon interaction, the hole cannot move and shows
similar behavior to the Condon case.

Acknowledgements

The support of the National Science Foundation is gratefully acknowledged.

Appendix: Optical Polarization and Wavepackets with Non-Condon
Dipole Moment

In order to express the wavepacket element and the optical polarization in
compact way, it is convenient to introduce a sign parameter, €, €2, and €3,



338 YOSHITAKA TANIMURA AND SHAUL MUKAMEL

7
Y
5
e,
),
N
7
2

R

Uty gy by 0,
gl
g, gy g ey e g,
AT
i)
iy

Z

i,

o, Y
\ws\\\\\\\\\\\\\\\\\\\
i
i,
i,

7% 2
% Lt o,
i
) e,
T4
)y

!
KN
2
\\\\\\\\

25

(b) non-Condon

"
K 7,
2
ittt
VR
K4
hy 7
7

2
2%,
5

W, QAT
Z L AT
i W
504 g
o, A
2, p A Pl
Y, A A B )
T / A A I
Z4 % Y iy | Q
74 2 e g
74 Z 2 A A )
2 W o e
7 4 7 U e o
” U
/ i
U
i,

(a) Condon

400

The impulsive pump-probe spectrum for the intermediate damped case v

. The other parameters are the same as the case of Figure 2.
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Using these, the first and the third order polarization with the non-Condon
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(a) Condon (b) non-Condon
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Fig. 5. The time-evolutions of the wavepacket for the intermediate damped case corresponds
to Figure 4.

interaction are expressed as [19]

POty = _z'/ooo A E(L = 1){u(0/De1)(0/0c2)

RS—”(tI)Cva2)}|c|:02:O + c.c., (Al)

p(3)(,5) = 3 Ooo dts /OOO dt, /OOO dt| E(t — t3)
E(t—ty —t3)E(t —t — 1 — t3)
X > {0/ Dea)(D)De3) (9] de2)(/der)

elea=+

R(S) ('[3, tr, 1, {Cj})}|{c}:o + c.c. (A2)

e+

Here, the generating function of the non-Condon response functions are
defined by

Rty er,e2) = explQe, (1) + Xz, (11, ¢1, ¢2))], (A3)
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Dl
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t27

where

(AS)

tl - g—é‘[([l)a

=

e1Ww

(t1)

Q

1)
ety +

i

t3, 1o,

(
—1Weg

QS]EQE}

3(t3)

3) - g—el(tl) — Yese

3t
[gelez(tZ) - gslez(t2 + t3)
—g_c (t1 +12) + g—c, (81 + L2 + 13)],

£
C

(

3

—&1&

(A6)

E g (1) (e + e2)
1o [ﬁ_e,(tl Jerea +

—1

X, (ty,cr,¢2)

(A7)
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Fig. 7. The time-evolutions of the wavepacket corresponds to Figure 6.

1‘(515253(1‘3, 2, ty, {Cj}) = C[<(]1({t})>5,5253 + Cz((jz({t})>615253
+e3(@3({t}))eieaes + cal@a({1}))eices
+E72 [er02g-=, (1) + cr635—c, (11 + 12)
+C2C3fj5152(t2) + Clc4g—€1(t1 + 2+ t3)
02040z, (12 + 13) + €3€aGeye; (13)

1 »
+5(c% + G+ 3+ e)g(0)] (A8)

with

<(]l({t})>515353 = _if_l[glg—el(tl) _€3g—6|(t1 +t2)
tesg-e, (L + 12 + 13)],

<(72({t})>515253 = —if_l[g l(g.—bf]l (tl) + 53gslsg(t2 + t3)
_53,(.]5152 \tZ) )

<‘j3({t})>615263 = _2'5_1[51.(]—51([1 + t2) - €1gg|52(t2) (A9)
+5395253(t3)]7

<974({t})>616253 = —ié—l[glg—sl(tl + 6 + t3) — 51{}5,52(752 + tg)

' +53g€263(t3)]'
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Note that Equations (A5) and (A6) are just a compact expression of Equations
(2.22) and (2.28), and are very convenient for numerical evaluations. The first

and the third order wavepackets are given by
WM (p,q.0)

= [T anm - o o) (45207,
0

—1)2

1 - 1
e —g.(ti.e o = 2
X CXP[ 2<q2>g(‘1 q+(t1,c1)) 2(p%), (p P+(t1,61))}
RY (1, e1,¢2)|ermerm0 + oy (A10)
and
Np,q,t) = / dt / di; / Atz E(t — t3)E(t — ty — t3)
E(t—t) —ty — t3)u(0/0c) (0] dc) (0] Oc3)
(42 (7)o (a)0) ™ D2
81,62:i
[ - 2
X exp | — — (e e ti, ¢
p[ 2<q2>g(q Gerer+ ({t}, {c}))
(0~ P (D (D))
2<p2>g p p51€2+ » 1Y
x RE) (13,12, 11 {e})] (=0 + c.c. (A11)
where the constants are given in Equation (2.19) and
Gey(t1ye1) = =€ g (1) + 1€ 25—, (1), (A12)
P (tiyer) = —iME G () + aME G, (1), (A13)
and

(7516253({”’ {C}) = "igﬁl[glg‘—m(tl + i+ t3) - 5lgezs|(t2 + t3)
+5396263(t3)] + v.g_z[clg—sl(tl + 1t + t3)
+62§6251(t2 + t3) + C3§5253(t3)], (A14)

]5615253({t}? {C}) = _iﬂjf_l[gl.é—m(tl + t2 + t3) - 51&5251(t2 + t3)
+3Geres (13)] + ME[er Te, (4 + 12 + 13)
+c2 g”5251 (t2 + 1'3) + Cc3 g5253 (t3)]- (AlS)

The second order wavepackets can be obtained from the third order one by
simply setting t3 = 0.
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