Quantum thermodynamics and quantum transport
Resonant tunneling diode
| A. Sakurai and Y. Tanimura, Self-excited current
oscillations in a resonant tunneling diode described by a model based on
the Caldeira-Leggett Hamiltonian,
New J. of Phys.
16, 015002 [ 24 pages] (2014). [Open Access] |
| A. Sakurai and Y. Tanimura,
An approach to quantum transport based on reduced hierarchy equations of motion: Application to a resonant tunneling diode,
J. Phys. Soc. Jpn
82, 033707 [4 pages] (2013). [Open Access] |
| R. Grossmann, A. Sakurai, Y. Tanimura, Electron pumping
under non-Markovian dissipation: The role of the self-consistent field,
J. Phys. Soc. Jpn.
85, 034803 [7 pages] (2016).[Open Access] |
Quantum ratchet. quantum heat-transport
| A. Kato and Y. Tanimura, Quantum Suppression of
Ratchet Rectification in a Brownian System Driven by a Biharmonic Force,
J. Phys. Chem. B
117, 13132-13144 (2013). A |
| . Kato and Y. Tanimura, Quantum Heat Transport of a Two-Qubit System: Interplay between System-Bath Coherence and Qubit-Qubit Coherence,
J. Chem. Phys, 143,
064107 [7 pages] (2015).
|
|
T.
Ikeda, Y. Tanimura, and A. Dijkstra, Modeling and analyzing a photo-driven molecular motor
system: Ratchet
dynamics and non-linear optical spectra,
J. Chem. Phys. 150, 114103
[17 pages]
(2019) |
Quantum thermodynamics
| A. Kato and Y. Tanimura, Hierarchical
Equations of Motion Approach to Quantum Thermodynamics
Thermodynamics in
the Quantum Regime ed. by F. Binder et al, Fundamental Theories of Physics
195 , pp575-591 (pdf).
|
| S. Sakamoto and
Y. Tanimura, Numerically "exact" simulations of entropy production in the
fully quantum regime: Boltzmann entropy versus von Neumann entropy,
J. Chem.
Phys. 153, 234107 (2020).
(pdf) |
|
S. Sakamoto and
Y. Tanimura, Open quantum dynamics theory for non-equilibrium work:
Hierarchical equations of motion approach,
J. Phys. Soc. Jpn. 90, 033001 (2021).
(pdf)
[Open Access] |
| S. Koyanagi and Y. Tanimura, The laws of
thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz
energy approach, J. Chem. Phys.
157, 157, 014104 (2022).(PDF) |
|
S. Koyanagi and Y. Tanimura, Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamics work diagrams,
J. Chem. Phys.
157, 084110 (2022). (PDF) |
|
S. Koyanagi and Y. Tanimura, Classical and
quantum thermodynamics described as a system–bath model: The dimensionless
minimum work principle, J. Chem. Phys.
160, 234112 (2024).(PDF) |
|
S. Koyanagi and Y. Tanimura, Classical and
quantum thermodynamics in a non-equilibrium regime: Application to
thermostatic Stirling engine,
J. Chem. Phys.
161, 114113 (2024).(PDF) |
|
S. Koyanagi and Y. Tanimura, Thermodynamic
quantum Fokker–Planck equations and their application to thermostatic
Stirling engine, J. Chem. Phys.
161, 112501 (2024).(PDF) |
| S. Koyanagi and Y. Tanimura,
Hierarchical equations of motion for multiple baths (HEOM-MB)
and their application to Carnot cycle, S. Koyanagi and Y. Tanimura,
Hierarchical equations of motion for multiple baths (HEOM-MB)
and their application to Carnot R,cycle,
J. Chem. Phys.
161, 162501 (2024).(PDF) |
Quantum heat-engine
| A. Kato and Y. Tanimura, Quantum Heat Current under Non-perturbative
and Non-Markovian Conditions: Applications to Heat Machines,
J. Chem. Phys.
145, 224105 (2016). |
| S. Koyanagi and Y. Tanimura, Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamics work diagrams,
J. Chem. Phys.
157, 084110 (2022). (PDF) |
|
S. Koyanagi and Y. Tanimura, Classical and
quantum thermodynamics described as a system–bath model: The dimensionless
minimum work principle, J. Chem. Phys.
160, 234112 (2024).(PDF) |
|
S. Koyanagi and Y. Tanimura, Classical and
quantum thermodynamics in a non-equilibrium regime: Application to
thermostatic Stirling engine,
J. Chem. Phys.
161, 114113 (2024).(PDF) |
| S. Koyanagi and Y. Tanimura,
Hierarchical equations of motion for multiple baths (HEOM-MB)
and their application to Carnot cycle, S. Koyanagi and Y. Tanimura,
Hierarchical equations of motion for multiple baths (HEOM-MB)
and their application to Carnot R,cycle,
J. Chem. Phys.
161, 162501 (2024).(PDF) |
Quantum Information
| A. G. Dijkstra and Y. Tanimura, Non-Markovian
entanglement dynamics in the presence of system-bath coherence,
Phys. Rev. Lett
104, 250401 (2010). |
| A. G. Dijkstra and Y. Tanimura, Non-Markovianity:
initial correlations and nonlinear optical measurements,
Phil.
Trans. R. Soc. A 370, 3658 (2012). |
| A. G. Dijkstra and Y. Tanimura, System bath correlations and the nonlinear response of qubits, J. Phys.
Soc. Jpn. 81, 063301 (2012). |
|
K. Nakamura and Y. Tanimura, Hierarchical
Schrödinger Equations of Motion for Open Quantum Dynamics,
Phys. Rev. A
98, 012109 (2018).
|
Switch to
Japanese
|