上へ 2次元振動分光 非線形電子分光 化学反応 量子熱力学 フラストレーション系 有機物導体 階層型運動方程式 経路積分法 確率過程理論 分子動力学 モンテカルロ法 量子化学法

量子熱力学および量子情報

共鳴トンネルダイオード

bulletA. Sakurai and Y. Tanimura, Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira-Leggett Hamiltonian, New J. of Phys. 16, 015002 [ 24 pages] (2014). [Open Access]
bulletA. Sakurai and Y. Tanimura, An approach to quantum transport based on reduced hierarchy equations of motion: Application to a resonant tunneling diode, J. Phys. Soc. Jpn 82, 033707 [4 pages] (2013). [Open Access]
bulletR. Grossmann, A. Sakurai, Y. Tanimura, Electron pumping under non-Markovian dissipation: The role of the self-consistent field, J. Phys. Soc. Jpn. 85, 034803 [7 pages] (2016).[Open Access]

量子ラチェット・量子熱輸送

bulletA. Kato and Y. Tanimura, Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force, J. Phys. Chem. B 117, 13132-13144 (2013). A
bullet. Kato and Y. Tanimura, Quantum Heat Transport of a Two-Qubit System: Interplay between System-Bath Coherence and Qubit-Qubit Coherence, J. Chem. Phys, 143, 064107 [7 pages] (2015).
bullet T. Ikeda, Y. Tanimura, and A. Dijkstra, Modeling and analyzing a photo-driven molecular motor system: Ratchet dynamics and non-linear optical spectra, J. Chem. Phys. 150, 114103 [17 pages] (2019)

量子熱力学

bullet A. Kato and Y. Tanimura, Hierarchical Equations of Motion Approach to Quantum Thermodynamics Thermodynamics in the Quantum Regime ed. by F. Binder et al, Fundamental Theories of Physics 195 , pp575-591 (pdf).
bullet S. Sakamoto and Y. Tanimura, Numerically "exact" simulations of entropy production in the fully quantum regime: Boltzmann entropy versus von Neumann entropy, J. Chem. Phys. 153, 234107 (2020). (pdf)
bullet  S. Sakamoto and Y. Tanimura, Open quantum dynamics theory for non-equilibrium work: Hierarchical equations of motion approach, J. Phys. Soc. Jpn. 90, 033001 (2021). (pdf) [Open Access]
bulletS. Koyanagi and Y.  Tanimura, The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach, J. Chem. Phys. 157, 157, 014104 (2022).(PDF)
bullet  S. Koyanagi and Y.  Tanimura, Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamics work diagrams, J. Chem. Phys. 157, 084110 (2022). (PDF)
bullet  S. Koyanagi and Y.  Tanimura, Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine, J. Chem. Phys. 161, 112501 (2024).(PDF)
bullet S. Koyanagi and Y.  Tanimura, Hierarchical equations of motion for multiple baths (HEOM-MB) and their application to Carnot cycle, S. Koyanagi and Y.  Tanimura, Hierarchical equations of motion for multiple baths (HEOM-MB) and their application to Carnot R,cycle, J. Chem. Phys. 161, 162501 (2024).(PDF)

量子熱機関

bulletA. Kato and Y. Tanimura, Quantum Heat Current under Non-perturbative and Non-Markovian Conditions: Applications to Heat Machines, J. Chem. Phys. 145, 224105 (2016).
bulletS. Koyanagi and Y.  Tanimura, Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamics work diagrams, J. Chem. Phys. 157, 084110 (2022). (PDF)
bullet  S. Koyanagi and Y.  Tanimura, Classical and quantum thermodynamics described as a system–bath model: The dimensionless minimum work principle, J. Chem. Phys. 160, 234112 (2024).(PDF)
bullet  S. Koyanagi and Y.  Tanimura, Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine, J. Chem. Phys. 161, 114113 (2024).(PDF)
bullet S. Koyanagi and Y.  Tanimura, Hierarchical equations of motion for multiple baths (HEOM-MB) and their application to Carnot cycle, S. Koyanagi and Y.  Tanimura, Hierarchical equations of motion for multiple baths (HEOM-MB) and their application to Carnot R,cycle, J. Chem. Phys. 161, 162501 (2024).(PDF)

量子情報

bulletA. G. Dijkstra and Y. Tanimura, Non-Markovian entanglement dynamics in the presence of system-bath coherence, Phys. Rev. Lett 104, 250401 (2010).
bulletA. G. Dijkstra and Y. Tanimura, Non-Markovianity: initial correlations and nonlinear optical measurements, Phil. Trans. R. Soc. A 370, 3658 (2012)
bulletA. G. Dijkstra and Y. Tanimura, System bath correlations and the nonlinear response of qubits,J. Phys. Soc. Jpn. 81, 063301 (2012).
bullet K. Nakamura and Y. Tanimura, Hierarchical Schrödinger Equations of Motion for Open Quantum Dynamics, Phys. Rev. A 98, 012109 (2018).

Switch to English

horizontal rule