ã‚Ö ‚QŽŸŒ³U“®•ªŒõ ”ñüŒ`“dŽq•ªŒõ ‰»Šw”½‰ž —ÊŽq”M—ÍŠw ƒtƒ‰ƒXƒgƒŒ[ƒVƒ‡ƒ“Œn —L‹@•¨“±‘Ì ŠK‘wŒ^‰^“®•û’öŽ® Œo˜HÏ•ª–@ Šm—¦‰ß’ö—˜_ •ªŽq“®—ÍŠw ƒ‚ƒ“ƒeƒJƒ‹ƒ–@ —ÊŽq‰»Šw–@

ŠK‘wŒ^—ÊŽqŽUˆíŒn‰^“®•û’öŽ®‚Ì“±o‚Ɖž—p

bulletŠK‘w•û’öŽ®‚Ì“±oiƒ}ƒXƒ^[•û’öŽ®AFokker-Planck•û’öŽ®j
bullet’ቷ•â³€‚Ì“±“ü
bullet‘½€ˆÊ—ÊŽqƒtƒHƒbƒJ[Eƒvƒ‰ƒ“ƒN•û’öŽ®‚Ì“±o‚Ɖž—p
bullet‰Šú‘ŠŠÖ‚Æ‹•ŽžŠÔŠK‘w•û’öŽ®

Žå—v‚È•¶Œ£

bulletY. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath, J. Phys. Soc. Jpn. 58, 101-114 (1989). [OPEN SELECT]
bulletY. Tanimura and P. G. Wolynes, Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath, Phys. Rev. A43, 4131-4142 (1991).
bullet Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A41, 6676-6687 (1990).
bullet Y. Tanimura and Y. Maruyama, Gaussian-Markovian quantum Fokker-Planck approach to nonlinear spectroscopy of a displaced Morse potentials system: dissociation, predissociation and optical Stark effects, J. Chem. Phys. 107, 1779-1793 (1997).
bulletY. Tanimura, Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn.  75,  082001  (2006).  [full text PDF: OPEN SELECT]
bulletY. Tanimura, Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities, J. Chem. Phys. 141, 044114 (2014). [Open Access]
bullet Y. Tanimura, Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations, J. Chem. Phys. 142, 144110 [20 pages] (2015) (PDF) [Open Access]
bullet  K. Nakamura and Y. Tanimura, Hierarchical Schrödinger Equations of Motion for Open Quantum Dynamics, Phys. Rev. A 98, 012109 (2018). (PDF)
bullet T. Ikeda and Y. Tanimura, Low-Temperature Quantum Fokker-Planck and Smoluchowski Equations and Their Extension to Multistate Systems, J. Chem. Theory Comput. 15 (2019). (Error correction)
bullet Y. Tanimura, Perspective: Numerically "Exact" Approach to Open Quantum Dynamics: The Hierarchical Equations of Motion (HEOM), J. Chem. Phys. 153, 020901 (2020). [Open Access]

ŠÖ˜A‚µ‚½•¶Œ£‚ÌŠ®‘S‚ȃŠƒXƒg‚Ö  (ŠK‘w•û’öŽ®‚̉ž—p)

u‹`˜^

bulletLecture note on Learn Schrödinger, Dirac & Feynman formalisms in 90 minutes + Lagrangean (Zip file, Oct 24 2024)
bulletLecture note on reduced hierarchy equations of motion: Theory  (Zip file, Oct. 24 2024)
bulletLecture note on reduced hierarchy equations of motion: Applications   (Zip file, Oct 8 2023)

Program Codes:

bulletMarkovian2005(Gaussian-Markovian master equation for a spin system coupled to 3D anisotropic baths)
bulletnonMarkovian2009 (with low temperature correction terms,   Jan 12, 2011 version)
bullet nonMarkovian2009+2D (with low temperature correction terms+ subroutines for linear and 2D correlation spectra,  Oct. 3rd, 2012 version)
bulletonMarkovian2012+2D (Drude+Brownian mode)
bulletTanimuranFP15 (real-time and imaginary-time quantum hierarchal Fokker-Planck equations,   March 21 , 2015 version)
bulletGPU-HEOM  (HEOM code for CUDA) M. Tsuchimoto and Y. Tanimura, J. Chem. Theory Comput.,11, 3859 (2015).
bullet Low-temperature corrected quantum Fokker-Planck and multi-state quantum Fokker-Planck Eqs. T. Ikeda and Y. Tanimura, J. Chem. Theory Comput. 15 (2019).
bullet S. Koyanagi and Y.  Tanimura, Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine, J. Chem. Phys. 161, 114113 (2024).(PDF)
bullet Thermodynamic Quantum Fokker-Planck Equation (T-QFPE). Ver, 1,1 (Oct. 21, 2024);S. Koyanagi and Y.  Tanimura,  J. Chem. Phys. 161, 112501 (2024).(PDF)ierarchical Equations of Motion for the Multiple Baths (HEOM-MB). Ver. 1.0 (Oct. 17, 2024); J. Chem. Phys. 161, 162501 (2024).(PDF)

Switch to English

horizontal rule

@